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Abstract

There are studied algebraic properties of the quadratic Poisson brackets on nonassociative 
noncommutive algebras, compatible with their multiplicative structure. Their relations both with 
differentiations of the symmetric tensor algebras and Yang-Baxter structures on the adjacent Lie algebras 
are demonstrated. Special attention is payed to the quadtatic Poisson brackets of the Lie-Poisson 
type, the examples of the Novikov and Leibniz algebras are discused. The nonassociated structures of 
commutative algebras related with Novikov, Leibniz, Lie and Zinbiel algebras are studied in details.
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Introduction 

Quadratic poisson brackets, their compatibility and rela-
ted algebraic structures

Let ( , , )A    be a ϐinite-dimensional a nonassociative and 
noncommutive algebra of dimension = dimN A     over an 
algebraically closed ϐield .  To the algebra A one can naturally 
relate the loop algebra A  of smooth mappings :u  1 A  and 
endow it with a the suitably generalized natural convolution 

,    on ,A A      where A  is the corresponding adjoint to A  
space.

First, we shall consider a general scheme of constructing 
nontrivial ultra-local and local [1], quadratic Poisson structures 
[2-7], on the loop space ,A  compatible with the internal 
multiplication in the algebra .A  Namely, let { :e As   = 1, }s N  be a 
basis of the algebra A  and its dual { :su A   = 1, }s N  with respect 

to ,    on ,A A   that is , :== jju ei i   for all , = 1, ,i j N  and such 
that for any 

1( ) = ( ; ) , ,
=1,

su x u x u e A xs
s N

   

the quantities ( ; ) := ( ),s su x u u x u       for all 1= 1, , .s N x  Denote by 

:=A A    Skew( )A A    and let : Symm( )A A A A           be a 

skew-symmetric bilinear mapping. Then for linear on A  functions 
( ) := ,a u a u   and ( ) := , ,b u b u   deϐined by elements , ,a b A   the 

expression 

{ ( ), ( )}:= ( ),a u b u a b u u                        (1.1)

deϐines an ultra-local quadratic skew-symmetric pre-Poisson 
bracket on .A  Since the algebra A  possesses its internal 
multiplicative structure “ " , the important problem [3,4], 
arises: Under what conditions is the pre-Poisson bracket (1.1) 
Poisson and compatible with this internal structure on A  ?  
To proceed with elucidating this question, we deϐine a co-
multiplication : A A A        on an arbitrary element c  A   by 
means of the relationship 

,( ) := ,c w v c w v                    (1.2)

for arbitrary ,w v  .A   Note that the co-multiplication 

: ,A A A        deϐined this way, is a homomorphism of the tensor 

algebra 1T ( )A  into 2T ( )A  and the linear pre-Poisson structure 
{, }   (1.1) on A  is called compatible with the multiplication “  ” on 
the algebra ,A  if the following invariance condition 

{ ( ), ( )}={ ( ), ( )}a u b u a u b u                             (1.3)

holds for all ,a b A   and arbitrary .u A   Now, taking into account 
that multiplication in the algebra A  can be represented for any 
, = 1,i j N  by means of the relationship

:= ,
=1,

se e ei j sij
s N

                               (1.4)
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where the quantities s
ij  for all ,i j  and = 1,k N  are constants, 

the co-multiplication : A A A      acts on the basic functionals 
su A   = 1, ,s N  as 

( ) = .
, =1,

s s i ju u uij
i j N

                            (1.5)

Additionally, if the mapping : A A     Symm( )A A     is 

given, for instance, in the simple linear form 

: ( ) ( ) .
, =1,

ij jii j j i s ku u u u c c u usk ks
s k N

                   (1.6)

The quantities ijcsk  are constant for all ,i j  and , = 1,s k N  
and chosen to be symmetric in their below indices. Then for the 
adjoint to (1.6) mapping : Symm( )A A A A        one obtains the 
expression 

: ( ) .
, =1,

ije e e e c e es k k s i jsk
i j N

                             (1.7)

Recall that a linear mapping :D A B  from an algebra A to the 
A-bimodule B is called a derivation, if for any , A    there holds 
the Leibniz property:

( ) = ( ) ( ).D D D                                     (1.8)

The following theorem [3], gives an effective compatibility 
criterion for the multiplication in the algebra A.

Theorem 1.1: The pre-Poisson bracket (1.2) is compatible 
with the multiplication (1.4) if and only if the mapping 

: Symm( )A A A A        is a differentiation of the symmetric 

algebra Symm( ).A A   

Proof. The idea of a proof consists in checking the relationships 
on the corresponding coefϐicients following both from the equality 
(1.2) and from equality 

( ) = ( ) ( )                       (1.9)

 for basis elements , Symm( ).A A      

Observe now that the pre-Poisson bracket (1.1) can be 
equivalently rewritten as 

,{ } = , ( ) ,a b u u a b u u                   (1.10)

giving rise, owing to the arbitrariness of elements , ,a b A   to the 
following tensor equality:

{ }= ( )u u u u             (1.11)

with the derivation (1.9). As was remarked in [3,4], the following 
natural commutator expression, 

( ) :=[ , ]r              (1.12)

for any Symm( )A A     and a ϐixed skew-symmetric constant 
tensor r A A    is an inner derivation of the algebra Symm( ).A A   
Thus, one can consider a class of pre-Poisson brackets (1.11) in 
the following commutator tensor form:

{ }=[ , ]u u r u u               (1.13)

and pose a problem of ϐinding conditions on the tensor r A A    

under which the pre-Poisson bracket (1.13) becomes a Poisson 
one.

If the algebra A  is noncomutive and associative, the adjacent 
Lie algebra AA

   makes it possible to construct the related 
formal Lie group := 1 ,G AA    whose tangent space at the unity 
can be identiϐied with the Lie algebra A  of the right-invariant 
vector ϐields on .GA  For a ϐixed element u GA   one can denote by 

, : ( )T Gu u uA A     the differentials of the right and left shifts 

on ,GA respectively. Let , : ( )T Gu u u A A
       be, respectively, dual 

mappings. Then, the following theorem, stated in [7], holds.

Theorem 1.2: The following bracket 

{ ( ), ( )}= ( ), ( ( )) ( ), ( ( ))a u b u b a b au u u u                 (1.14)

for any , ( )a b T Gu A
   is Poisson, if the homomorphism : ,A A   

naturally related with the tensor ,r A A    is skew-symmetric and 

satisϐies the modiϐied Yang-Baxter relationship:

([ , ] [ , ] [ , ] [ , ]            �           (1.15)

for all , A     subject to the Lie commutator structure in .A  

If to take into account that in this case there hold the expressions

( ) = ( ), ( ) = ( )2 1c c u c c uu u             (1.16)

for any ,c A   where the mappings 1 and 2  mean the 
convolutions of the co-multiplication : A A A      with the ϐirst 
and the second tensor components, respectively, that is 

, = , := ( ), ,1c u c u c u            

, = , := ( ),2c u c u c u                      (1.17)

for any ,A    the bracket (1.14) will become 

{ ( ), ( )}= , ( ( )) , ( ( ))2 2a u b u b a u u b u a u                 (1.18)

for any , ( ),a b T Gu A
   which can be easily enough computed, if to 

take into account the relationship (1.5).

The following result [5,7], is a simple consequence of Theorem 
1.2 in the case of the matrix associative algebra A  and is almost 
classical.

Theorem 1.3: Let the algebra A  be matrix associative with 
respect to the standard multiplication, and endowed both with 
the natural commutator Lie structure [, ]   and with the trace-type 
symmetric scalar product , := ( ).Tr     De ine also for the tensor 

:= ,
, =1,

ijr r e e A Ai j
i j N

    

the related  -homomorphism 

:= < , >
, =1,

ijr e ei j
i j N

              (1.19)

for any .A    Then the pre-Poisson bracket (1.18) is Poisson, if 
the  -homomorphism (1.19) is skew-symmetric and satisϐies the 
modiϐied Yang-Baxter relationship (1.15). Moreover, the Poisson 
bracket (1.18) can be equivalently rewritten in the following 
simpliϐied form: 



028

Citation: Artemovych OD, Balinsky A, Prykarpatski AK (2019) The quadratic Poisson structures and related nonassociative noncommutative Zinbiel type algebras. 
Ann Math Phys 2(1): 026-037. DOI: https://dx.doi.org/10.17352/amp.000007

{ ( ), ( )}= , ( ) , ( )a u b u ub ua bu au             (1.20)

for any , .a b A 

Remark 1.4: The Yang-Baxter relationship (1.15) is basic for 
inding the corresponding internal multiplication structure of the 

algebra ,A  allowing the the quadratic Poisson bracket (1.18). 
If for example, to assume that the adjacent loop Lie algebra A  
allows splitting into two subalgebras, = ,A AA

      then the 
homomorphism  �   solves the relationship (1.15), where, 
by de inition, the mappings : A AA

        are the suitable 
projections. If to assume, that the adjacent loop Lie algebra A  is 
generated by the associative multiplication “  ” of the Balinsky-
Novikov loop algebra ,A  then the related Lie structure is given by 
the commutator 

[ , ] :=                   (1.21)

for any , ,A     giving rise to the ultra-local quadratic Poisson 
bracket (1.18). To the regret, we do not know whether the Lie 
structure 

[ , ] := D Dx x                  (1.22)

for any , A     and all 1,x  suitably determining the adjacent 
loop Lie algebra ,A  can be generated by some associative 
multiplication on the loop Balinsky-Novikov algebra, with respect 
to which the Lie structure (1.22) could entail the local quadratic 
Poisson bracket (1.18). 

Problem 1.5: Concerning the algebraic structures discussed 
above the interesting problem arises - to classify associative 
Balinsky-Novikov loop algebras ,A  whose adjacent Lie algebras A  
allow splitting into two nontrivial subalgebras subject to the Lie 
structure (1.21). 

Remark 1.6: In the case of the basic Leibniz loop algebra ,A  it 
is well known that the usual commutator structure (1.21)  does not 
generate the adjacent loop Lie algebra ,A  yet the following inverse-
derivative Lie structure 

1 1[ , ] := ,D Dx x                  (1.23)

suitably determined for any , A     and all 1,x  already does 
the adjacent loop Lie algebra .A  Yet, we do not know whether 
the Lie structure (1.23) can be generated by some associative 
multiplication “  ” on the loop Leibniz algebra .A  

Quadratic Poisson Structures

The lie-poisson type generalization

Assume as above that ( , , )A    is a ϐinite dimensional algebra 
of the dimension = dimN A   (in general nonassociat ive and 
noncommutive) over an algebraically closed ϐield .  Based 
on the algebra A one can construct the related loop algebra A  
of smooth mappings :u  1 A  and endow it with the suitably 
generalized natural convolution ,    on ,A A      where A  is 
the corresponding adjoint to A  space.

First, we will consider a general scheme of constructing 
nontrivial ultra-local and local [1], Poisson structures on the 

adjoint space ,A  compatible with the internal multiplication 
in the loop algebra .A  Consider a basis { :e As   = 1, }s N  of the 
algebra  A and its dual { :se A  = 1, }s N  with respect to the natural 

convolution ,    on ,A A   that is , :== jje ei i   for all , = 1, ,i j N  
and such that for any 

1( ) = ( ) , ,
=1,

su x u x e A xs
s N

   

the quantities ( ) := ( ),u x u x es s       for all 1= 1, , .s N x  Denote by 
:=A A   Skew( )A A   and let : := Symm( )A A A A       be a skew-

symmetric bilinear mapping. Then the expression 

{ ( ) , ( )}:= ( ), ( )u a u b u x a b                 (2.1)

deϐines for any ,a b A   an ultra-local linear skew-symmetric pre-
Poisson bracket on .A  If the mapping : A A    Symm( )A   is 
given, for instance, in the simple linear form 

: ( ) ( ) ,
=1,

s se e e e c c ei j j i sij ji
s N

                             (2.2)

where quantities scij  are constant for all ,i j  and = 1, ,s N  then 
for the adjoint to (2.2) mapping : A A A        one obtains the 
expression 

: ( ) .
, =1,

s s s i je c c e eij ji
i j N

                  (2.3)

For the pre-Poisson bracket to be a Poisson bracket on 
,A  it should satisfy additionally the Jacobi identity. To ϐind 

the corresponding additional constraints on the internal 
multiplication “  ” on the algebra ,A  deϐine for any 1( ) , ,u x A x    
the skew-symmetric linear mapping 

( ) : ,u A A                     (2.4)

called [8], by the Hamiltonian operator, via the identity 

( ) , := ,u a b u a b                    (2.5)

for any ,a b  ,A   where the mapping : A A A        is determined 
by the expression (2.3), being adjoint to it. Then it is well known 
[8], that the pre-Poisson bracket (2.1) is a Poisson one iff the 
Hamiltonian operator (2.4) satisϐies the Schouten-Nijenhuis 
condition:

[[ ( ), ( )]]= 0u u                   (2.6)

for any ( ) .u x A 

Having observed that the following action 
( ) = ( ) ( )

, =1,

s s ku e c c u x ei sik ki
s k N

               (2.7)

holds for any basis element , = 1, ,e A i Ni   the resulting pre-Poisson 
bracket (2.1)  becomes equal to 

{ ( ) , ( )}= ( ) , =

= ( ) ( ) = ( ), ( )
=1, , =1, , =1,

u a u b u a b

s s i j s s i jc c a b u x u x c c a b es sij ji ij ji
s Ni j N i j N



   

 

 

 
       
       
                  (2.8)

for any ( )u x A   and all , .a b A   If now to deϐine on the algebra A the 
natural adjacent to the algebra A  Lie algebra structure 

[ , ]= := ( )
=1,

s se e e e e e c c ei j i j j i sij ji
s N

                (2.9)
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for any basis elements ,e ei j   , , = 1, ,A i j N  the expression (2.8) yields 
for all ,a b A   the well known [9,10], classical Lie-Poisson bracket 

{ ( ), ( )}= ,[ , ] .u a u b u a b            (2.10)

Concerning the adjacent Lie algebra structure condition (2.9), 
it can be easily rewritten as the set of relationships, 

=s s s sc cij ji ij ji            (2.11)

whose evident solution is 

=s scij ij            (2.12)

for any , , = 1, .i j s N  As the bracket (2.10) is of the classical Lie-
Poisson type, for the Hamiltonian operator (2.7) to satisfy the 
Schouten-Nijenhuis condition (2.6) is enough to check only the 
weak Jacobi identity for the loop Lie algebra ,A  adjacent to the 
algebra A  via imposing the Lie structure (2.9), taking into account 
the relationships (2.12). For instance, if the commutator of the 
adjacent loop Lie algebra A  is given by the expression 

[ , ]= ,a b a D b b D ax x            (2.13)

the corresponding algebra A coincides with the well known 
Balinsky-Novikov algebra, determined by means of the following 
relationships

[ , ]= ,a b a D b b D ax x            (2.14)

where, by deϐinition, = =R b b a L aa b  for any , .a b A   If, for instance, 
the commutator of the adjacent loop Lie algebra A  is given by 
the expression

1 1[ , ]=a b a D b b D ax x
              (2.15)

for a suitably determined the inverse-differentiation mapping 
1 : ,D A Ax
    the corresponding algebra A coincides with the well 

known right Leibniz algebra, described by the relationships

[ , ]= , [ ]= 0,R R R R Ra b a b a b            (2.16)

for any , .a b A   As a consequence of reasonings above one can 
formulate the following generalizing theorem.

Theorem: The linear pre-Poisson bracket (2.10)  on A  is Lie-
Poisson on the adjoint space A


  iff the internal multiplicative 

structure of the algebra  A is compatible with the weak Lie algebra 
structure on the adjacent loop Lie algebra .A  

The same way one can consider a simple ultra-local quadratic 
pre-Poisson bracket on A  in the form 

{ ( ), ( )}:= ( ) ( ), ( )u a u b u x u x a b                 (2.17)

for any , ,a b A   where the skew-symmetric mapping : A A    
Symm( )A A    is given for any ,i j  = 1,N  in the quadratic form 

( ) := ( )( ).
, =1,

ks kse e e e c c e e e ei j j i k s s kij ji
k s N

         
              (2.18)

In particular, if to assume that the coefϐicients =ks k scij ij   for 

some constant numbers k
ij  and s   for all ,i j  and , = 1, ,k s N  

where, by deϐinition, the multiplications 

:=
=1,

ke e ek s kij
k N

             (2.19)

coincide with those of the algebra ,A  then the pre-Poissson 
bracket (2.17)  yields for any ,a b A  a very compact form 

{ ( ), ( )}:= ( ) ( ), , ] [ , ] ,u a u b u x u x a b a b            (2.20)

generalizing the classical Lie-Poisson expression (2.10) and 
parametrically depending on the constant vector 

:= .
=1,

se As
s N

  

Thus, for the pre-Lie-Poisson bracket (2.20) one can formulate 
suitable constraints on the algebraic structure of A. For instance, 
if the weak algebraic structure on the adjacent Lie algebra A  
is given, respectively, either by the Lie commutator (2.13) or by 
(2.15), then the corresponding multiplicative structures of the 
algebra A are generated, respectively, by the Balinsky-Novikov 
(2.14) and Leibniz (2.16) algebras relationships, augmented with 
the following common tensor multiplicative constraint

= 0 = ,R R R Ra a                (2.21)

which holds for any a A  and a ϐixed element .A   So, one can 
formulate the following theorem.

Theorem 2.2: The quadratic pre-Lie-Poisson bracket (2.20) on 
A  is Poisson iff the internal multiplicative structure of the algebra 

A is compatible both with the weak Lie algebra structure on the 
adjacent loop Lie algebra A  and with the tensor multiplicative 
relationships (2.21). 

In these cases there arises an interesting problem of describing 
the Balinsky-Novikov and Leibniz algebras, whose multiplicative 
structures additionally satisfy the tensor relationships (2.21). 
Such and related algebraic structure problems are planned to 
be studied in detail elsewhere. In the Section below we proceed 
to studying general algebraic structures related both with 
generalized Balinsky-Novikov and Leibniz algebras and so-
called Zinbiel algebras, having diverse important applications in 
communications technology.

Balinsky-Novikov Type Algebraic Structures 
and Their Main Properties

Let ( , , )A    be an associative commutative algebra over a ϐield 
  of any ϐinite or inϐinite dimension (with the addition “  ” and 
the multiplication “  ”) and   its derivation, i.e. : A A   is a 
-linear map satisfying the L eibniz rule. Then 

, = ( , , )A A   

is a Balinsky-Novikov algebra (so-called the  -adjancent or 
-associated Balinsky-Novikov algebra of A) with respect to “  ” 
deϐined by the rule 

= ( )a b a b a b     

(where   is a ϐixed element of A) and so 

( ) = ( )a b c a c b   

and 

( ) ( ) = ( ) ( )a b c a b c b a c b a c         
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for all , ,a b c A . Balinsky-Novikov algebras were introduced in 
connection with the so-called Hamiltonian operators [8] and 
Poisson brackets of hydrodynamic type [11]. Note here, that the 
term “Balinsky-Novikov algebra” was given by M. Osborn in [12]. 
Moreover, 

, = ( , ,[ , ])LA A   

is a Lie algebra (so-called the  -adjancent or  -associated Lie 
algebra of A) with respect to the Lie bracket “ , ]  ” deϐined by the 
rule 

[ , ]=a b a b b a  

for any ,a b A  (see [13-15] and [16, p.~285]). A triple ( , , )Z    is 
called a Zinbiel algebra (or a dual Leibniz algebra) if

• ( , )Z   is an Abelian group,

• ( ) = ( ) ( )x y z x y z x z y      ,

• ( ) = ( ) ( )x y z x z y z     and ( ) = ( ) ( )x y z x y x z     

for all , ,x y z Z . As a consequence, 

( ) = ( ) .x y z x z y   

If 

=x y x y y x 

for all ,x y Z , then ( , , )Z    is an associative commutative algebra 
(so-called the adjancent or associated associative algebra AZ  of a 
Zinbiel algebra Z). Zinbiel algebras were introduced by J.-L. Loday 
in [17,18] and are very popular in the control theory (in context 
of “chronological” algebras (see e.g. [19-22])) and in the theory of 
Leibniz cohomology [23].

Let ( , , )D    be a (Lie, Balinsky-Novikov, Zinbiel or associative) 
algebra with the derivation algebra DerD , DerD     and DerD  . 
Then D is a Lie algebra. If I is an ideal of D and ( )I I  , then we say 
that I is a  -ideal of D. Recall that D is called:

•  -simple if 0D D   and any  -ideal I  of D is 0  or D ,

•  -prime if, for any  -ideals ,B C  of D, the condition 
= 0B C  implies that = 0B  or = 0C ,

•  -semisimple if, for any  -ideal B of D, the condition 
= 0B B  implies that = 0B . 

Every  -prime algebra is  -semisimple and every  -simple 
algebra is  -prime. If ={ }  and D  is a  -simple (respectively 
 -prime or  -semisimple), then we say that D  is  -simple 
(respectively  -prime or  -semisimple). Moreover, if ={0}

, then a  -simple (respectively  -prime or  -semisimple) 
algebra is simple (respectively prime or semisimple).

Some interesting properties of Zinbiel algebras were obtained 
by A.S. Dzhumadildaev, K.M. Tulenbaev [24,25] and B.A. Omirov 
[26]. In particular, A.S. Dzumadil’daev [25], has proved that any 
ϐinite-dimensional Zinbiel algebra over the complex numbers ϐield 
is nilpotent. We prove the next result.

Theorem 3.1: Let Z  be a Zinbiel  -algebra and DerZ    . 
Then the following hold:

• if AZ  is a  -simple (respectively  -prime or 

-semisimple) algebra, then the Zinbiel algebra Z  is the 
ones,

• If 2char   and Z  is a 2 -torsion-free a  -simple 
(respectively  -prime or  -semisimple) Zinbiel algebra, 
then AZ  is a  -simple (respectively  -prime or 

-semisimple) associative commutative algebra. 

The purpose of this paper is also to study relationships 
between associative commutative algebras A , their  -associated 

Balinsky-Novikov algebras ,A   and  -associated Lie algebras 
,LA . Connections between properties of an associative 

commutative algebra A  and its  -associated algebra ,LA  have 
been investigated by P. Ribenboim [27], C.R. Jordan, D.A. Jordan 
[13,14] and A. Nowicki [15]. X. Xu [28], found some classes of 
inϐinite dimensional simple Balinsky-Novikov algebras of type 

,A  . C. Bai and D. Meng [29], have proved that, if A  is a ϐinite 
dimensional associative commutative algebra and 0 DerA  , 
then ,0A  is transitive (i.e. 

: = ( )r A x x a x a Aa   

is a nilpotent right transformation operator of ,0A  for any ( )a A

and ,LA  is a solvable Lie algebra [30]. In [31, Proposition~2.8] it 
is proved that the Balinsky-Novikov algebra ,A   is simple if and 
only if an associative commutative ring A  is  -simple. As noted 
in [32], there exists a conjecture: the Balinsky-Novikov algebras 
N  can be realized as the algebras ,0A , where A  is a suitable 
associative commutative algebras, and their (compatible) linear 
transformation. Recall that a binary operation :1G N N N   of a 
Balinsky-Novikov algebra ( , , )N    is called its linear deformation 
if a family of algebras ( , , )N gq , where 

( , ) = ( , )1g a b a b qG a bq  

are still Balinsky-Novikov algebras for every q N . If 1G  is 
commutative, then it is called compatible.

As noted in [32], a “good” structure theory for algebraic 
systems means an existence of a well-deϐined radical and the 
quotient by the radical is semisimple. Our ϐirst result in this way 
is the following

Theorem 3.2: Let A  be an associative commutative algebra 
with 1 ,  2char  , 0 DerA   and A  . Then the following are 
equivalent:

•  A  is a semisimple (respectively prime or simple) algebra,

• ,A   is a semisimple (respectively prime or simple) 
Balinsky-Novikov algebra,

• ,LA  is a semisimple (respectively prime or simple) Lie 
algebra. 

Any unexplained terminology is standard as in [18,21,33,34].
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An Associative Commutative Structure of a 
Zinbiel Algebra

Recall that a (Zinbiel or associative) algebra ( , , )A    is called 
reduced if the implication 

= 0 = 0a a a 

is true for any a A .

Lemma 4.1: (see [35, Theorem~3.4]) If ( , , )Z    is a Zinbiel 
algebra, then ( , , )Z    is an associative commutative ring, where “
 ” is de ined by the rule 

=a b a b b a 

for any ,a b Z . 

An additive subgroup I  of a Zinbiel algebra Z  is said to be 
an associative ideal of Z  if I Z I . It is easy to see that  I  is an 
associative ideal of Z  if and only if it is an ideal of AZ .

Lemma 4.2: Let Z  be a Zinbiel algebra, DerZ     and 
a Z . Then the following hold:

• :={ | }a Z a z z Z   is a right ideal of Z ,

• the right annihilator 

( ) :={ |( ) = 0}rann a Z t Z a Z t  

of a Z  is an associative ideal of Z ,

• if  I is a right  -ideal of Z, then ( )I Z I   is a  -ideal of Z ,

• if I is a  -ideal of Z, then the right annihilator 
:={ | = 0}rannI t Z I t   and the annihilator 

:={ | = 0 = }annI t Z I t t I    are  -ideals, the left 
annihilator :={ | = 0}lannI u Z u I   is a right  -ideal of Z ,

• the associated associative algebra AZ  has the identity e  

if and only if =a e a a e   for any a Z ,

• if 2char  , then Z  is reduced if and only if AZ  is 
reduced,

• If AZ  has the identity e  and I  is an ideal of Z  such that 
e I , then =I Z ,

• if 2char   and ,I J  are commutative ideals of Z , then 
I J annZ ,

• if K  is an associative  -ideal of Z , then 

( ) :={ | }S K a K a Z K 

is a right  -ideal of Z ,

• if ,I J  are  -ideals of Z , that I J  is the ones,

• If AZ  has identity, then every proper ideal of a Zinbiel 
algebra Z  is contained in its maximal ideal. 

Proof. Let ,z t Z . 

(1) Clearly that a Z  is a subgroup of the additive group ( , )Z   
and 

( ) = ( ) ( ) .a z t a z t a t z a Z       

Hence a Z  is a right ideal of Z .

(2) If ( )u rann a Z  , then 

( ) ( ) = (( ) ) ( ) ( ) = ( ) ( )a z t u a z t u a z u t a z u t            

what gives that 

( ) ( ) = 0a z t u  

and 

= ( ).u t t u rann a Z  

(3) If ,i j I , then 

( ) = ( ) = ( ) ( ) ( )t i z j t i t z j t i t z j t j z Z I I               

and 

( ) = ( ) = ( ) ( ) .i z j t i t z j t i t z t j Z I I            

(4) We see that 

0 = ( ) = ( ) ( ) = ( )i a t i a t i t a i a t       

for any i I , a rannI , 

0 = ) = ( ) ( ) = ( )i t a i t a i a t i t a       

and so = 0t a  and a t rannZ . Moreover, 

0 = ( ) = ( ) ( ) = ( )d i a d i a i d a i d a   

and so ( )d a rannI  for any d . If b lannI , then 

( ) = ( ) ( ) = 0b t i b t i b i t     

and b t lannI .

(5) Indeed, 

= = = .a a e e a a e a a e   

(6) It follows from 

= 0 = 0.z z z z 

(7) In fact, =z z e e z I    and so =I Z .

(8) Assume that i I  and j J . Then 

( ) = ( ) ( ) = ( ) ( ) =
= ( ) ( ) ( ) ( )

i z j i z j i j z z j i j z i
z i j z i j j z i j i z

 
  

         
       

and from this 

2 ( ) = ( ).z i j j z i                  (4.1)

By other hand, 

( ) = ( ) = ( ) ( ) = 2 ( ).j z i z i j z i j z j i z i j                      (4.2)

Then Eqs. (4.1)  and (4.2)  imply that 
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( ) = 0 = ( ) = ( ).j z i z i j z i j     

(9) If ( )u S A , then 

( ) = ( ) ( ) = ( ) .u t z u t z u z t u t z u Z A         

(10) Straightforward.

(11) It follows in view of the part (7) . 

Lemma 4.3: Let A  be an associative  -ideal of a Zinbiel 
algebra Z , where DerZ    . . If = 0A A , then 

( ) = ( ) ( )0S A S A Z S A 

is a  -ideal of Z  such that ( ) ( ) = 00 0S A S A . 

Proof. By Lemma 4.2, (9)  and (3) , ( )0S A  is an ideal of A . Let 
, ( )a b S A  and ,z t Z . Then 0 = =b a b a a b   and we have 

that =a b b a  . Since ( ) = ( ) = 0z b a z b a    , 
( ) = ( ) ( ) =

= ( ) ( ) = ( ) ( ) = ( ) = 0
a z b a z b a b z

a z b b z a a b z b a z a b z


 
     

        

and 
( ) ( ) = ( ( )) (( ) ) =

= ( ( )) ( ( )) = ( ( )) = 0,
t a z b t a z b t z b a
t a z b t z b a t a z b




        
       

we conclude that ( ) ( ) = 00 0S A S A . 

Proof of Theorem 3.1: If DerZ  , then ( )ADer Z  .

Proof for simplicity. Since every  -ideal of Z  is a  -ideal of AZ , 
the simplicity of AZ  implies that Z  is simple.

Proof for primeness. Let AZ  be a  -prime algebra and ,I J  
-ideals of Z  such that = 0I J . Then ,I J  and J I  are  -ideals 
of AZ  and 

( ) ( ) = 0.J I J I I J   

Since ( ) ( ) = 0J I J I  , we conclude that = 0J I . But then 
= 0I J  and consequently = 0I  or = 0J .

(1) Proof for semisimplicity. By analogy as in the prime case.

(2) Proof for simplicity. Let Z  be a  -simple Zinbiel algebra and 

A  a  -ideal of AZ . Then, by Lemma 4.2 (9) , ( )S A  is a right 

-ideal of Z  and, in view of Lemma 4.2 (3) , ( ) ( ( )) =S A Z S A Z  . 
Since =A z s s z z s     for any z Z  and ( )s S A , we obtain 
that =A Z .

Proof for primeness. Let Z  be a  -prime Zinbiel algebra and ,I J  
be  -ideals of AZ  such that = 0I J . Then =i j j i   for any 
i I  and j J  and 

( ) = ( ) = ( ) ( ) =
= ( ) ( ) ( ) = ( ) = ( )
i z z i j j i z z i j i z j z i

j i z j z i j z i j i z i j z
    

   
         

         

and 

( ) = ( ) ( ) = ( ) ( )i z z i j i z j z i j i j z z i j            

for any z Z  what forces that ( ) = ( ) = 0z j i z i j    . This means 
that ( ) = 0Z I J  . By the  -primeness of Z , = 0Z I  (and so 

= 0I ) or = 0J .

Proof for semisimplicity. Assume that Z  is a  -semisimple Zinbiel 
algebra and A is an associative  -ideal of Z such that = 0A A . By 
Lemma 4.3, ( )0S A  is an ideal of Z  such that ( ) ( ) = 00 0S A S A  and 
so ( ) = 00S A . If 0a b   for some ,a b A , then 

( ) = ( )a b z a b z A A A    

for any z Z . Hence ( )A A S A , a contradiction. Thus = 0A . 

As usual 
0 = idA

is the identity map of A .
Lemma 4.4: Let Z  be a Zinbiel algebra and DerZ    . 

Then the following conditions are equivalent:

• for any  -ideals ,I J  of Z  the implication 

= 0 = 0 = 0I J I or J

is true (i.e. Z  is  -prime),
• for any elements ,a b Z , integers 1k  , 0mi   and 

derivations i   ( = 1, , )i k  the implication 

1( ( ) ) = 0 = 0 = 01
m mk a Z b a or bk    

is true. 

Proof. (1) (2)  Since Z  is  -prime, AZ  is  -prime by Theorem 

3.1. Assume that ,a b Z  and 

1( ( ) ) = 0.1
m mk a Z bk                 (4.3)

Then 

1= ( )1
0=1

, ,1

m mkI a Zk
mk k

k

 

 






   



is a right  -ideal. Moreover, ( )I Z I   is a  -ideal of Z  by 
Lemma 4.2 (3)  and 

( ) = ( ) ( ) = 0i z j b i b z j b    

for any ,i j I  and z Z . This means that ( ( ))b rann I Z I  
. Inasmuch as ( ( ))rann I Z I   is a  -ideal of Z  by Lemma 4.2
(3)  and ( ( ( ))) = 0I rann I Z I  , we conclude that = 0I  (and then 

= 0a ) or = 0rannI  (and so = 0b ).

(2) (1)  Assume that = 0I J  for some  -ideals ,I J  of Z . 
Then ( ) ( ) = 0J I J I    and consequently = 0J I . This gives that 
Eq. (4.3)  is true for any a I  and b J . Hence = 0a  or = 0b . If 

0b   for some b J , then = 0I .

Lemma 4.5: Let Z  be a Zinbiel algebra and DerZ    . 
Then the following conditions are equivalent:

• for any ideal I  of Z  the implication 

= 0 = 0I I I

is true (i.e. Z  is  -semisimple),

• for any elements ,a b Z , integers 1k  , 0mi   and 
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derivations i   ( = 1, , )i k  the implication 

1( ( ) ) = 0 = 01
m mk a Z a ak    

is true. 

Proof. By the same argument as in the proof of Lemma 4.4.

The Balinsky-Novikov Properties

As noted in [8,36][31, Lemma~2.3], [37, Proposition~2.4], 
[27], the following lemma holds.

Lem ma 5.1: If A  is an associative commutative algebra, 
DerA   and A  , then ,A   is a Balinsky-Novikov algebra. 

Lemma 5.2: Let A  be an associative commutative algebra, 
DerA   and ,b A  . Then we have:

• ,d DerA   if and only if [ , ]( ) ( )d b d b annA    ,

• if 1 A , then ,d DerA   if and only if [ , ]( ) ( ) = 0d b d b   ,

• ,0d DerA  if and only if [ , ]= 0A d  ,

• if 1 A , then ,0d DerA  if and only if [ , ]= 0d  . 

Proof. (1)  For any ,a b A  and ,d DerA   we have 

( ) ( ) ( ( )) ( ) ( ) ( ) = ( ( )) =
= ( * ) = ( )* * ( ) =

= ( ) ( ) ( ) ( ( )) ( )

d a b a d b d a b d a b a d b d a b a b
d a b d a b a d b

d a b d a b a d b a d b

      

   

               


         if and only if 

[ , ]( ) ( ) = 0.a d b d a b    

(2) – (4)  The rest follows from the part (1) . 

Lemma 5.3: Let   be a surjective derivation of an associative 
commutative algebra A  with 1 . If I  is a right ideal of a Balinsky-
Novikov algebra ,A  , then I  is an ideal of A . 

Proof. Indeed, if i I  and a A , then 

* = ( )I i a i a i a    

and therefore * 1 =i i I   . Since   is surjective, we have that 

( ) = *i a i a i a I     

and so i A I  . 

It is easy to see that * = 0e e  for any idempotent 2 =e e A .

Lemma 5.4: Let A  be an associative commutative algebra, 
DerA   and A  . Then the following hold:

• [15, Lemma~3.1] if 2char   and U  is a Lie ideal of ,LA

, then [ , ]= 0U U  or U  contains a nonzero  -ideal of A ,

• if I  is a  -ideal of A , then I  is an ideal of ,A  ,

• if K  is an additive  -group of a Balinsky-Novikov algebra 
,A  , then K  contains a  -ideal 

( ) ={ | }I K k K k A KA   

of A ,

• if 1 A  and B  is an ideal of ,A  , then , ( )B B B   ,

• if 1 A  and C  is a left ideal of a Balinsky-Novikov algebra 
,0A , then ( ) ( )C I CA  ,

• if I  is  -ideal of A , then I  is an ideal of ,LA ,

• if e  is an idempotent of A , then ,0e rannA ,

• the kernel ,0ker ={ | ( ) = 0}a A a   of   is a left ideal of 
,0A ,

• if ( )a a A   , then a A  is an ideal of ,LA ,

• if B  is an ideal of a Balinsky-Novikov algebra ,A  , then 
B  is an ideal of the Lie algebra ,LA ,

• if S  is an ideal of a Balinsky-Novikov algebra ,A  , then 

( ) ={ | }T S s S s A SA   

is an ideal of ,LA  and ( )T S SA  ,

• if 1 A  and I  is an ideal ,LA , then ( )I I   and I A  is a 
 -ideal of A ,

• if W  is an ideal of a Balinsky-Novikov algebra ,A  , then 
( ) ( )w w I WA     for any w W ,

• if 2char   and = 0a a , then a A  is a right ideal of ,A  . 

Proof. (1)  For proof see [15].

(2) In fact, * = ( )i a i a i a I       and * = ( )a i a i i a I       
for any i I  and a A .

(3) Assume that ( )k I KA  and x A . Then 

( ) = ( )x k A k x A k A K      

what implies that ( )I KA  is an ideal of A . Since 

( ) ( ) = ( ) ( )k A k A k A K K        

and ( )k A K  , we conclude that ( )k A K   . Hence 
( ( )) ( )I K I KA A  .

(4) We see that * 1 = (1) =B b b b b       and 
1 * = ( )B b b b    for any b B . Consequently ( ),B B B    .

(5) For any a A  and c C  we have * = ( )C a c a c  what 
implies that ( ) ( )C I CA  .

(6) For any i I  and a A  

[ , ]= ( ) ( )i a i a a i I    

what yields the result.

(7) Since ( ) = 0e , we have * = ( ) = 0A e A e .

(8) If keru   and a A , then ( * ) = ( ( )) = 0a u a u   . Hence 
* kera u  .

(9) For any ,t b A  
[ , ]= ( )* *( ) = ( ) ( ) ( ) =

= [ , ] ( ) .
a t b a t b b a t a t b b a t b a t

a t b b a t a A
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(10) Since * , *B A B A B B  , we deduce that [ , ]B A B .

(11) Let ,a x A  and ( )s T SA . Then 

( * )* = *( * ) *( * ) ( * )*s x a s x a x s a x s a   and therefore 

[ , ]* = *( * ) *( * ) .s x a s x a x s a S  For any i I  

[ , ] [ ,1]= * 1 1 * = ( ) 1 ( ) = ( ).I I A i i i i i i i       

By the part (10) , W  is an ideal of the Lie algebra ,LA  and so 

* = ( )W w a w a w a    

and 

[ , ]= * * = ( ) ( )W w a w a a w w a a w    

for any w W  and a A . Then 

* [ , ]= ( ( )) .W w a w a w w a    

Hence ( ) ( )w w I WA    .

(1) We have 

0 = ( ) = 2 ( ), * = ( ) = 0a a a a a a a a a a        

and 
( )*( ) ( ) =

= ( ) ( ) = 0
a A a A a b a c a b a c

a b a c a b a c
 

 
         

      


for any ,b c A . 

If x A , then 
, ,:l A a x a Ax

    

is a left transformation operator of the Balinsky-Novikov algebra 
,A  .

Lemma 5.5: Let A  be an associative commutative algebra, 
DerA   and ,x A  . Then the following hold:

• if ( ) :={ | = forany }Z DerA DerA DerA       , then 
,0DerA A ,

• ,0r DerAx
  if and only if *( * ) = 0A A x ,

• ,0l DerAx
  if and only if ( * )* = 0A A x ,

• [ , ]= 0r ra b  for any ,,a b A  ,

• [ , ]= [ , ]l l la b a b  for any ,,a b A  ,

• ,( ) ={ | }L A l a Aa
    is a Lie algebra. 

Proof. (1)  If ( )Z DerA  , then 

( * ) = ( ( )) = ( ) ( ) ( ( )) =
= ( ) ( ) ( ( )) = ( )* * ( )
d a b d a b d a b a d b
d a b a d b d a b a d b

  
 

   
   

for any ,0,a b A .

(2) If ,0r DerAx
 , then 

( ) ( ) = ( * )* = ( * ) = ( )* * ( ) =
2= ( ) ( ) ( ) ( ) ( )

a b x a b x r a b r a b a r bx x x

a x b a b x a b x

 

    

  

       

and so 
2( ( ) ( ) ( )) = 0.a b x b x     

This is equivalent to 

( ( )) = 0.a b x  

Hence *( * ) = 0a b x .

By the same argument as in the part (2) .

(4) (6)  Evident. 

V.N. Zhelyabin and A.S. Tikhov [38], asked: is true that an 
associative commutative algebra ( , , )A    with a derivation   is 
-simple in the usual sense if and only if its corresponding Balinsky-
Novikov algebra ( , , )A    is simple?

Lemma 5.6: Let A  be an associative commutative algebra, 
DerA   and A  . Then A  is a  -simple algebra if and only if 
,A   is a simple Balinsky-Novikov algebra. 

Proof. For proof see [31, Proposition~2.8]. 

Corollary 5.7: Let A  be an associative commutative algebra 
with 1 , DerA   and A  . If A  is a ield, then ,A   is a simple 
Balinsky-Novikov algebra. 

In the next we need the following

Lemma 5.8: Let A  be an associative commutative 

-semisimple algebra with 1 , 2char   and DerA  . If I  is a 
-ideal of A  and 2( ) = 0I , then ( ) = 0I  and ( ) = 0I A . 

Proof. If i I , then 
2 20 = ( ) = (2 ( )) = 2 ( ) ( ) 2 ( ) = 2 ( ) ( )i i i i i i i i i i            

and therefore ( ) ( ) = 0i i  . Then 2( ( ) ) = 0i A   and so ( ) = 0i . 
Moreover, 

0 = ( ) = ( ) = ( ) ( ) = ( ).I I A I A I A I A        

Lemma 5.9: Let A  be an associative commutative algebra with 
1 , 0 DerA   and A  . Then A  is a  -prime algebra if and 
only if ,A   is a prime Balinsky-Novikov algebra. 

Proof. ( )  Let I  and J  be ideals of ,A   such that 

* = 0.I J

This means that 

( ) = 0i j i j    

for all i I  and j J . By Lemma 5.4 (4) , 

, ( ) , ( ) .I I I and J J J      

Moreover, annI  and ( )ann annI  are  -ideals of A , 
( )I ann annI  and 

( ) .i j annI                 (5.1)

Assume that 0I  . Then = 0annI  and ( ) =j j    for any 
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j J . As a consequence, = 0J J   . Since J A  is a  -ideal of A , 
we conclude that 2 0J  . Then = 0  and, in view of (5.1) , 

( ) = 0.J                                   (5.2)

In as much as 

( * )*( * ) * = 0,J I J I I J

we obtain that 
2( ) ( ) ( ) ( ) ( ) = 0J I I J J J I I          

and by (5.1)  and (5.2) , 

2( ) ( ) = 0.J J I I   

)a  If ( ) 0ann J J  , then ( ( )) = 0J J ann ann J J   . Hence 
( ) ( ) = 0A J A J    and we deduce that = 0J .

)b  Assume that ( ) = 0ann J J . Then 2( ( ) ) ( ( ) ) = 0I A I A     and, 
by Lemma 5.8, ( ) = 0I . As a consequence, ( ) = 0I A . This means 
that ( ) ( )A ann I A    what forces that ( ) = 0A , a contradiction.

( )  Let ,A   be a  -prime Balinsky-Novikov algebra. Assume 
that X  and Y  are  -ideals of A  such that = 0X Y . By Lemma 
5.4 (2) , X  and Y  are ideals of ,A   and = 0X Y . Thus = 0X  
or = 0Y . 

Lemma 5.10: Let A  be an associative commutative algebra 
with 1 , 0 DerA   and A  . Then A  is a  -semisimple algebra 
if and only if ,A   is a semisimple Balinsky-Novikov algebra. 

Proof. By the same argument as in the proof of Lemma 5.9. 

Lemma 5.11: (see [39]) Let ( , , )N    be a Balinsky-Novikov 
algebra. Then ( )Z N  and [ , ]N N  are ideals of N  and ( ) , ]= 0Z N N N  

Lemma 5.12: Let A  be an associative commutative algebra 
with 1 , 2char  , 0 DerA   and A  . If A  is a  -prime 
algebra, then ,( ) = 0Z A  . 

Proof. By Lemma 5.11, , , ,( )*[ , ]= 0Z A A A      . If 
, ,[ , ]= 0A A    , then 

( ) = ( )a b b a  

for all ,a b A . Then 

( ) ( ) = ( ) = ( ).a a b a a b a a b a b a           

This gives that ( ) = 0a a b   and so ( ( ) )a a ann A A   . Since 
( ( ) )ann A A   is a  -ideal and ( ) 0A  , we obtain that = 0a a . 

Then ( ) ( ) = 0a b a b    for any ,a b A  and =a b b a   . This yields 
that = 0A A , a contradiction. Consequently , ,[ , ] 0A A      and 
thus ,( ) = 0Z A  . 

It is known [31], that not all simple Balinsky-Novikov algebras 
have nonzero idempotents. Let A  be a commutative associative 
ring with 1 , 0 DerA   and A  . If A  is a then ,e A   is an 
idempotent if and only if ( ) =e e   . 

Proof. Let ,= *e e e A  . Then ( ( ) = ) = 0e e e   . If = 0e a  for 
some a A , then ( )a e A    and ( ) ( )e a ann e A    . Hence 

2( ( ) ) = 0e a  . Since (a_0)=a_0 A ^2(e) a +a_0 A (e) a= -e (a) a 

= ( )0a e a  

Recall that a nonzero ideal S  of A  is called minimal if, for any 
nonzero ideal P of A , the implication

Lemma 5.13: Let A  be an associative commutative algebra 
with 1 , A   and DerA  . If ( )A P   for any minimal  -prime 
ideal P  of A , then:

• every abelian ideal I  of the Lie algebra ,LA  is contained 
in the  -prime radical ( )A ,

• ,LA  is not solvable. 

Proof. (1)  Let I  be a nonzero abelian ideal of the Lie algebra ,LA

. If ( )I A  , then there exists a minimal  -prime ideal of P  of 
A  such that I P . Obviously that 

: / ( ) /A P a P a P A P   

is a nonzero derivation of the quotient algebra /A P . Since /A P  
is a  -prime algebra, then ,( / )A P  , where = P   , is a prime 
Lie algebra. Hence ( ) /I P P  is zero, a contradiction.

(2) It follows in view of the part (1) . 

The Lie Properties

Lemma 6.1: [15, Theorem~3.3] Let A  be an associative 
commutative algebra with 1  and 0 DerA  . Then A  is a 
-simple algebra if and only if ,A   is a simple Lie algebra. 

Proof. By the same  argument as in the proof of Lemma 5.9. 

Lemma 6.2: Let A  be an associative commutative algebra 
with 1 , 2char   and 0 DerA  . If I  is an abelian Lie ideal 
of a semisimple Balinsky-Novikov algebra ,A  , then ( ) = 0I . If, 
moreover, ,LA  is prime, then = 0I . 

Proof. )a  Let I  be a Lie ideal of ,LA  such that 

[ , ]= 0.I I

Then 0 =[ , ]= ( ) ( )u v u v v u     for any ,u v I . If x A , then 

0 =[ ,[ , ]]= ([ , ]) [ , ] ( ) =
= [ ( ), ] [ , ( )] [ , ] ( ) =

= ( ( )* * ( )) ( * ( ) ( )* )
( * * ) ( ) =

2= ( ( ) ( ) ( )0 ( ) ( ) ( ) ( )
2= ( ( ) ( ) ( ))

( ) (

u v x u v x v x u
u v x u v x v x u

u v x x v u v x x v
v x x v u

u v x x v v x u x v u

x u v v u

x u

 
  

   


      

  



  
    

     
  

         

     

   2( ) ( )) ( ( ) ( ) ( )) =
= [ , ( )].

v v u u v x x v
u v x

    


      


This means that 

[ , ( )] = 0I A I annI                 (6.1)

because annI  is a  -ideal of A . If y A , then 

0 =[ , ( )]=[ , ( ) ( )]=
= ( ( ) ) ( ) ( ) ( ) ( )

2( ) ( ) ( ) ( ) ( ) = 2 ( ) ( ).

u x y u x y x y
u x y u x y x y u

u x y u x y x y u u x y
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Hence ( ) ( )A A annI   . Then ( ) ( ) ( ) = 0I I annI I    . 

Since ( )ann I  is a  -ideal of A  and ( ) ( )I ann I  , we conclude 
that ( ) = 0I .

)b  Now assume that ,A   is prime. In view of (6.1) , 
20 =[ , ( )]= ( ).I A I A 

Then 2( ) = 0A  and, by Lemma 5.8, = 0 , a contradiction. 
Hence = 0I . 

Lemma 6.3: Let A  be an associative commutative algebra 
with 1 , 2char  , 0 DerA   and A  . Then ,A   is a prime 
Balinsky-Novikov algebra if and only if ,LA  is a prime Lie algebra. 

Proof. ( )  Assume that I  and J  are nonzero ideals of ,LA  such 
that 

[ , ]= 0.I J

By Lemma 6.2, [ , ] 0I I   and [ , ] 0J J  . Then I  (respectively 
J ) contains a nonzero  -ideal 0I  (respectively 0J ) of A

. Since [ , ]= 0I J I J  , we have = 00 0 0 0I J I J I J     , a 
contradiction. Hence ,LA  is a prime Lie algebra.

( )  Suppose that B  and C  are  -ideals of A  such that 
= 0B C . By Lemma 5.4 (6) , B  and C  are ideals of ,LA . Then 

[ , ]= 0B C  and therefore = 0B  or = 0C . 

Lemma 6.4: Let A  be an associative commutative algebra with 
1 , 2char  , 0 DerA   and A  . Then ,A   is a semisimple 
Balinsky-Novikov algebra if and only if ,LA  is a semisimple Lie 
algebra. 

Proof. ( )  Let I  be an ideal of the Lie algebra ,LA  such that 
[ , ]= 0I I . By Lemma 6.2, ( ) = 0I . Then 

, ]= ( ) ( ) = ( ) =I i a i a a i i a i a      

for any i I  and a A  and 

= ( ) = 0.A I A I 

Hence I  is an ideal of the Balinsky-Novikov algebra ,A  . 
Since = 0I I , we obtain that = 0I . Thus the Lie algebra ,LA  
is semisimple.

( )  Assume that B  is a  -ideal of A  such that 2 = 0B . By 
Lemma 5.4 (6) , B  is an ideal of ,LA  and [ , ]= 0B B . Consequently 

= 0B . Hence ,A   is a semisimple Balinsky-Novikov algebra. 

Proof of theorem 3.2: It follows from Lemmas 5.6, 5.9, 6.1, 
6.3 and 6.4.

Conclusion

We have shown that quadratic Poisson brackets generated 
by nonassociative noncommutive algebras and carrying 
many interesting algebraic properties compatible with their 
multiplicative structure. Their relations to the Yang-Baxter 
structures on the adjacent Lie algebras proved to be instructi ve 
when studying compatible Hamiltonian operators, generating 

integrable dynamical systems on functional spaces. It was 
demonstrated the importance of the quadratic Poisson brackets 
of the Lie-Poisson type, there were constructed Balinsky-Novikov 
and Leibniz algebras and investigated their internal algebraic 
structures. The nonassociative structures of commutative 
algebras related with Balinsky-Novikov, Leibniz, Lie and Zinbiel 
algebras were described in details.
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