Peertechz

PHYSICS GROUP

SED ANNALS OF
SED Mathematics and Physics assistances ANNALS OF

Research Article Precontinuity and applications

Janusz Matkowski*

Institute of Mathematics, University of Zielona Góra, Szafrana 4A, PL 65-516 Zielona Góra, Poland

ISSN: 2689-7636

Received: 27 June, 2022 **Accepted:** 11 July, 2022 **Published:** 13 July, 2022

***Corresponding author:** Janusz Matkowski, Institute of Mathematics, University of Zielona Góra, Szafrana 4A, PL 65-516 Zielona Góra, Poland, E-mail: J.Matkowski@wmie.uz.zgora.pl

DOI: https://dx.doi.org/10.17352/amp

Keywords: Precontinuous function; Functional equation; Beta-type function

Copyright License: © 2022 Matkowski J. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

https://www.peertechzpublications.com

Introduction

1 In this note, a map *f* acting between metric (or topological) spaces is referred to be pre-continuous at a point *x* if, for some sequence (x_n) of points x_n different from *x* and converging to x, the sequence $(f(x_n))$ converges to $f(x)$ (section 2, Definition 1). We observe that this rather weak property enjoys every function with a dense graph, and a function is not precontinuous at a point if, and only if, the respective point of its graph is isolated. In particular every additive, exponential, logarithmic, and multiplicative function is pre-continuous at every point. As a matter of fact, these functions have a stronger property, namely, they are uniformly pre-continuous (section 3, Definition 2, and Definition 3).

Another definition of continuity, using the notion of a preopen set, was introduced by Mashhour, Abd El-Monsef, and El-Deep [1] (Remark 1).

In section 4 we show that pre-continuity can be useful in solving some functional equations. Applying the property of uniform (and one-sided) pre-continuity, we determine the translative beta type functions considered in [2], the homogeneous multiplicative Cauchy quotients, and a topic leading to the Pexider equation.

Recently the family of beta-type means considered in [3,4] was applied in [5] (Remark 6).

1 *2010 Mathematics Subject Classiϔication.* Primary 26A15, 33B15, 39B22

Pre -continuous functions

We introduce the following

Definition 1

Let $(X, d_X), (Y, d_Y),$ be metric spaces. A function $f: X \rightarrow Y$ is called pre-continuous at the point $x \in X$, if there *exists a sequence* (x_n) , $x_n \in X \setminus \{x\}$ for $n \in \mathbb{N}$ such that $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} f(x_n) = f(x)$. The function *f is called pre-continuous if it is pre-continuous at every point ox X.*

It is easy to construct examples of functions that are not pre-continuous. For instance, every function $f : \mathbb{R} \to \mathbb{R}$ that is increasing at 0, i.e. such that $\limsup_{x\to 0^-} f(x) < f(0) < \liminf_{x\to 0^+} f(x)$, is

not pre-continuous at 0. On the other hand, even extremely discontinuous functions are pre-continuous. Namely, we have the following

Theorem 1

Let (X, d_X) , (Y, d_Y) be metric spaces and let $f: X \rightarrow Y$ *be an arbitrary function.*

(i) If the graph *f* is dense in the product metric space *X*×*Y*, then *f* is pre-continuous.

- (ii) The function *f* is pre-continuous at a point $x \in X$ if and only if $(x, f(x))$ is not an isolated point of the graph *f*.
- (iii) If *f* is continuous at an accumulation point *X*, then *f* is pre-continuous at the point .

Proof. (i) Take an arbitrary point $x \in X$. The density of the graph of *f* there exists a sequence $(x_n, f(x_n)) \in X \ X \times Y$ $n \in \mathbb{N}$, such that $\lim_{n \to \infty} (x_n, f(x_n)) = (x, f(x))$ in the product metric, that is such that $\lim_{n\to\infty}$ $\frac{d}{dx}$ $\left(x_n, x\right) = 0$ and $\lim_{n\to\infty} d_Y(f(x_n),f(x))=0$, which completes the proof.

(ii) If *f* is pre-continuous at a point $x \in X$ then, by Definition 1, there is a sequence (x_n) , $x_n x_n \in X \setminus \{x\}$ for $n \in \mathbb{N}$ such that $\lim_{n\to\infty}x_n=x$ and $\lim_{n\to\infty}f(x_n)=f(x)$. Without any loss of generality, we can assume that (x_n) is one-toone. Then $(x_n, f(x_n)) \in X \times Y$, $n \in \mathbb{N}$, is a sequence of different points of the graph *f* converging $(x, f(x))$ in the product topology. The converse implication follows from the definition of the product topology.

We omit an easy argument for (iii).

It is well-known that the graph of every discontinuous additive function $\alpha : \mathbb{R} \to \mathbb{R}$ is dense \mathbb{R}^2 (as well as the graphs of discontinuous multiplicative, exponential, and logarithmic functions are dense in the suitable natural subsets \mathbb{R}^2).

Theorem 2

Let $I \subset \mathbb{R}$ be an interval. For an arbitrary function, $f : I \to \mathbb{R}$ *the set of all points* $x \in I$ *that f is not pre-continuous x is at most countable.*

Proof. Let $Z \subset X$ be the set of all $x \in I$ such that *f* is not pre-continuous at $^{\mathcal{X}}$. By Theorem 1(ii), the set $\{(x, f(x)) : x \in Z\}$ is the set of all isolated points of the graph f , that are contained $I \times \mathbb{R}$. But, clearly, the set of isolated points of any subset $I \times \mathbb{R}$ is at most countable.

Remark 1

Let (X, \mathcal{T}) , (Y, \mathcal{S}) be topological spaces. In [1] a function $f:X\to Y$ is said to be pre-continuous at a point $x\in X$, if for *every open set* $V \in \mathcal{S}$ *containing* $f(x)$ *there is a set* $U \subset X$

such that $x \in U$, $U \subset Int\big(Cl(U)\big)$ (preopeness) and $f(U) \subset V$ (see also [6]).

For obvious reasons, the notion of precontinuity proposed in Definition 1 could be called a Heine-type. We omit to discuss the mutual relations between these two concepts.

Uniform pre-continuous functions

Definition 2

Let X be a subset of a metric group G with an addition " *" and neutral element* 0 *and Y be a metric space. A function* $f:X\to Y$ is called uniformly pre-continuous, if there exists a *sequence* $z_n \in G \setminus \{0\}$ for all $n \in \mathbb{N}$, with $\lim_{n \to \infty} z_n = 0$ *such that* $x + z_n \in X$, for all $x \in X$, $n \in \mathbb{N}$, and $\lim_{n\to\infty} f(x+z_n)=f(x).$ $\rightarrow \infty$

Remark 2

Let X be a metric group with an addition $" + "$ and neutral *element* 0 , Y *be a metric space, and* $f: X \rightarrow Y$ *be an additive function, i.e.*

$$
f(x+y) = f(x) + f(y), \quad x, y \in X.
$$

The following two conditions are equivalent

- (i) f is pre-continuous at a point;
- (ii) f is uniformly pre-continuous.

Proof. To prove (i) \Rightarrow (ii) assume that for some $x_0 \in X$ there is $x_n \in X \setminus \{x_0\}$ for all $n \in \mathbb{N}$ such that $\lim_{n \to \infty} x_n = x_0$ $\lim_{n\to\infty} f(x_n) = f(x_0)$. Putting $z_n := x_n - x_0$ we have $z_n \in X \setminus \{0\}$ for every $n \in \mathbb{N}$ and $\lim_{n \to \infty} z_n = 0$. Hence, for arbitrary $x \in X$, making use of the additivity of f and its oddness, we

$$
\lim_{n\to\infty} f(x+z_n) = \lim_{n\to\infty} \Big[f(x) + f(z_n) \Big] = f(x) + \lim_{n\to\infty} f(z_n)
$$

$$
= f(x) + \lim_{n\to\infty} f(x_n - x_0) = f(x) + \lim_{n\to\infty} \Big[f(x_n) - f(x_0) \Big]
$$

$$
= f(x) + \Big[f(x_0) - f(x_0) \Big] = f(x),
$$

Which proves (ii). The converse implication is trivial.

Remark 3

In the case of functions of real variable we define a uniformly *right-pre-continuous (left-pre-continuous) function, postulating* *that the respective zero sequences* (z_n) *are positive (resp. negative). In this case, the oddness of the additive function implies that the above result remains true if (i) is replaced by " f is left- or rightpre-continuous at a point".*

Corollary 1

Let X be a metric group with an addition $" + "$ and a neutral *element* 0 *. If a function* $f: X \to \mathbb{R}$ *is additive and discontinuous at a point, then its graph is dense in the product metric space* $X \times \mathbb{R}$.

Proof. Assume that $f: X \longrightarrow \mathbb{R}$ is additive and discontinuous at a point. Of course, f is discontinuous 0 (see, for instance [7]). Since $f(0) = 0$ there is a sequence (z_n) with $\lim_{n\to\infty} z_n = 0$ such that either $\lim_{n\to\infty} f(z_n)$ is a finite nonzero real number or $\lim_{n\to\infty} f(z_n) = \infty$.

In the first case, we can assume that

$$
\lim_{n\to\infty}f(z_n)=1
$$

If the second case holds, choosing a sequence of real rational numbers (r_n) , $r_n \neq 0$ for all $n \in \mathbb{N}$, such that

$$
\lim_{n\to\infty}\frac{f(z_n)}{r_n}=1,
$$

and putting

$$
w_n := \frac{z_n}{r_n}, \quad n \in \mathbb{N},
$$

we have

 $\lim_{n\to\infty}$ ^{*w*_n} = 0, →∞

and, making use of the rational homogeneity of f (Aczél [8] p. 32, Kuczma [7] p. 121, Theorem 1),

$$
\lim_{n\to\infty}f\left(w_n\right)=\lim_{n\to\infty}f\left(\frac{z_n}{r_n}\right)=\lim_{n\to\infty}\frac{f\left(z_n\right)}{r_n}=1.
$$

Thus, in both possible cases, there exists a sequence $\begin{pmatrix} z_n \end{pmatrix}$

 $\lim_{n\to\infty}z_n=0$ such that

 $\lim_{n\to\infty}f(z_n)=1.$ →∞

Hence, by the rational homogeneity of f , every rational number $r \in \mathbb{Q}$, we have

 $\lim_{n\to\infty} f(rz_n) = r \lim_{n\to\infty} f(z_n) = r,$ $\rightarrow \infty$, $\rightarrow \infty$ $n \rightarrow \infty$

Which implies that every point $\{0\} \times \mathbb{R} \{ (0,t) : 0 \in X \wedge t \in \mathbb{R} \}$ is an accumulation point of the graph f . Through the additivity f we have

$$
f(x + rz_{n}) = f(x) + f(rz_{n}), \quad x \in X, r \in \mathbb{Q}
$$

so, for every point $x \in X$, the set $\{x\} \times \mathbb{R}$ is contained in the closure of the graph f . This completes the proof.

Definition 3

Let X be a subset of a metric group G with a multiplication *" " and neutral element* 1*and Y be a metric space. A function* $f:X \rightarrow Y$ is called uniformly pre-continuous, if there exists *a* sequence $z_n \in G \setminus \{1\}$ for all $n \in \mathbb{N}$, with $\lim_{n \to \infty} z_n = 1$ *such that for all* $x \in X$, $n \in \mathbb{N}$, we have $x \cdot z_n \in X$, and $\lim_{n\to\infty} f(x \cdot z_n) = f(x).$

Remark 4

Here, in the case of functions of real variable we define uniformly right-pre-continuous (left-pre-continuous) functions, postulating that the respective zero sequences (z_n) *are such that* $z_n > 0$ *(resp.* $z_n \leq 0$) for all $n \in \mathbb{N}$.

Theorem 3

Every additive function $\alpha : \mathbb{R} \to \mathbb{R}$ *is uniformly precontinuous.*

Every additive function $\alpha:(0,\infty)\to\mathbb{R}$ is rightuniformly pre-continuous.

Indeed, assume that $\alpha : \mathbb{R} \to \mathbb{R}$ is additive and take $z_n = \frac{1}{n}$ for $n \in \mathbb{N}$. As every additive function is rationally homogeneous, we have for every $x \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$
\alpha\left(x+\frac{1}{n}\right) = \alpha(x) + \alpha\left(\frac{1}{n}\right) = \alpha(x) + \frac{1}{n}\alpha(1),
$$

Whence $\lim_{n\to\infty} \alpha\left(x+\frac{1}{n}\right) = \alpha(x)$. Since $\mathbb R$ the addition is a group of the neutral element 0 , and the euclidean topology, satisfies the conditions of Definition 2, the function α is uniform and pre-continuous $\mathbb R$.

The argument for the second result is analogous.

Corollary 2

Every exponential function $f : \mathbb{R} \to (0, \infty)$, *i.e.* such that $f(x+y) = f(x)f(y), \quad x, y \in \mathbb{R},$ is uniformly pre-continuous (in the additive group $\mathbb R$).

Proof. It $f : \mathbb{R} \to (0, \infty)$ is exponential then $\alpha = \log \circ f$ is additive in $\mathbb R$, and $f = \exp \circ \alpha$. Thus, for all $x \in \mathbb R$ and $n \in \mathbb{N}$, by the additivity of α , similarly as above, we have

$$
f\left(x+\frac{1}{n}\right) = f(x)f\left(\frac{1}{n}\right) = f(x)\exp\left(\alpha\left(\frac{1}{n}\right)\right) = f(x)\exp\frac{\alpha(1)}{n} = e^{\frac{\alpha(1)}{n}}f(x),
$$

so $\lim_{n\to\infty} f\left(x+\frac{1}{n}\right) = f(x)$. Using Definition 2 with $X = \mathbb{R}$ and $z_n = \frac{1}{n}$ for $n \in \mathbb{N}$, we get the result.

Corollary 3

Every logarithmic function $f:(0,\infty) \to \mathbb{R}$ *, i.e. such that*

$$
f(xy) = f(x) + f(y), \quad x, y \in (0, \infty).
$$

is uniformly pre-continuous (in the multiplicative group $(0, \infty)$).

Proof. The interval $(0, \infty)$ with the multiplication, neutral element 1, and the euclidean topology, satisfies the conditions of Definition 2. It $f:(0,\infty) \to \mathbb{R}$ is logarithmic then $\alpha : \mathbb{R} \to \mathbb{R}$ defined by $\alpha := f \circ \exp$ is additive, and $f = \alpha \circ \log \cdot$ Taking $z_n := \exp\left(\frac{1}{n}\right)$ we have $\lim_{n\to\infty} z_n = 1$

and for all $x > 0$ and $n \in \mathbb{N}$,

$$
f(x \cdot z_n) = f(x) + f(z_n) = f(x) + \alpha \left(\log z_n\right) = f(x) + \alpha \left(\log e^{\frac{1}{n}}\right)
$$

$$
= f\left(x\right) + \alpha \left(\frac{1}{n}\right) = f\left(x\right) + \frac{\alpha \left(1\right)}{n},
$$

whence $\lim_{n\to\infty} f(x \cdot z_n) = f(x)$, which, in view of Definition 3, shows that the function f is uniformly precontinuous.

Corollary 4

Every multiplicative function f : $(0, \infty) \rightarrow (0, \infty)$, *i.e.* such *that*

$$
f(xy) = f(x)f(y), \quad x, y \in (0, \infty),
$$

is uniformly pre-continuous (in the multiplicative group $((0, \infty), \cdot)$).

Proof. The function $\alpha : \mathbb{R} \to \mathbb{R}$ defined by $\alpha := \log_{\circ} f \circ \exp$

is additive, and $f = \exp \circ \alpha \circ \log$ we can argue similarly as in the proof of Corollary 3 .

Examples of applications

To illustrate the possible advantages of the introduced notions we begin with the following

Proposition 1

The functions
$$
f, g : (0, \infty) \to \mathbb{R}
$$
 satisfy the equation
\n
$$
f(x+y) + g(z) = f(z+y) + g(x), \quad x, y, z \in (0, \infty),
$$
\n(1)

and f is uniformly right-pre-continuous, if and only if

$$
f = \alpha + b, \qquad g = \alpha + c
$$

for some additive function $\alpha : (0, \infty) \to \mathbb{R}$ and $b, c \in \mathbb{R}$. *Proof.* Assume that f, g satisfy this equation (1) and f is uniformly right-pre-continuous. Writing this in the form

$$
f(x+y) - g(x) = f(z+y) - g(z), \ \ x, y, z \in (0, \infty),
$$

We see that the difference $f(x+y) - g(x)$ does not depend on *x* , so the function h : $(0, \infty) \rightarrow \mathbb{R}$ given by

$$
h(y) := f(x+y) - g(x)
$$

is well defined and, consequently, the Pexider functional equation

$$
f(x+y) = g(x) + h(y), \quad x, y \in (0, \infty), \tag{2}
$$

is satisfied. In view of Definition 1 (see also Remark 2), there exists a positive sequence $\left(z_n \right)$ tending to 0 such that for every $x > 0$,

$$
\lim_{n\to\infty}f(x+z_n)=f(x).
$$

Setting $y = z_n$ in (2) we have, for every $x > 0$,

Citation: Matkowski J (2022) Precontinuity and applications. Ann Math Phys 5(2): 086-094. DOI: https://dx.doi.org/10.17352/amp.000044

$$
f(x+z_n)=g(x)+h(z_n), n\in\mathbb{N},
$$

and letting $n \rightarrow \infty$, we obtain conclude that

$$
f(x) = g(x) + h_0, \quad x \in (0, \infty),
$$
 (3)

where

 $h_0 := \lim_{n \to \infty} h(z_n)$

Exists and does not depend on x .

Similarly, taking $x := z_n$ in (2), we have

$$
f(z_n+y)=g(z_n)+h(y), n \in \mathbb{N},
$$

and letting $n \rightarrow \infty$, us obtain

$$
f(y) = g_0 + h(y), \quad y > 0,
$$
 (4)

Where

 $g_0 := \lim_{n \to \infty} g(z_n)$

is a real constant. From (2) , (3) , and (4) , setting

$$
b:=g_0+h_0,
$$

we get

$$
f(x+y)-b = [f(x)-b] + [f(y)-b], x, y \in (0, \infty),
$$

which shows that $\alpha := f - b$ is an additive function, and

 $f = \alpha + b$.

Setting this function into equation (1) gives

$$
g(x)-\alpha(x)=g(z)-\alpha(z), x, z\in (0,\infty),
$$

that is $g - \alpha = c$ for some real *C*. Thus

$$
g(x) = \alpha(x) + c, \ x \in (0, \infty).
$$

The converse implication follows from the fact that α is uniformly right-pre-continuous (Theorem 2).

For a function $f:(1,\infty) \to (0,\infty)$ define the bivariate function P_f : $(1, \infty)^2 \rightarrow (0, \infty)$ by

$$
P_f(x,y) := \frac{f(x)f(y)}{f(xy)}, \quad x, y > 1.
$$

Proposition 2

Let
$$
f:(1,\infty) \to (0,\infty)
$$
 be uniformly right-pre-continuous

and $m: (1, \infty) \rightarrow (0, \infty)$ be an arbitrary function.

Then the following conditions are equivalent

(i) the function P_f is *m* -homogeneous, i.e.

$$
P_f(x,ty) = m(t)P_f(x,y), t, x, y > 1;
$$
 (5)

ii) the function $m \equiv 1$ and there is $b > 0$ such that the

function *^f* $\frac{b}{b}$ is multiplicative, i.e.

$$
bf(xy) = f(x)f(y), x, y > 1.
$$

Proof. Assume (i). Then for all $s, t, x, y > 1$ we have

$$
m(st) = \frac{P_f(stx,sty)}{P_f(x,y)} = \frac{P_f(s(tx),s(y))}{P_f(x,y)} \frac{P_f(x,ty)}{P_f(x,y)} = m(s)m(t),
$$

so *m* is multiplicative.

The interval $(1, \infty)$ is a subset of the multiplicative group $((0, \infty), \cdot)$ with neutral element 1. Let (z_n) be a sequence satisfying the conditions of Definition 3 of uniform rightprecontinuity of *f* in $(1, \infty)$; in particular $z_n > 1$ for $n \in \mathbb{N}$ and $\lim_{n\to\infty} z_n = 1$. Using the definition of P_f and setting $y := z_n$ in (5) we have

$$
\frac{f(x)f(tz_n)}{f(t^2xz_n)} = m(t)\frac{f(x)f(z_n)}{f(xz_n)}, \quad t, x > 1, n \in \mathbb{N}.
$$

Letting $n \to \infty$ us conclude that

$$
b := \lim_{n \to \infty} f(z_n)
$$

exists, is positive, finite, and

$$
\frac{f(x)f(t)}{f(t^2x)} = bm(t), \quad t, x > 1.
$$

Thus
$$
\frac{f(tx)}{f(t^2x)}
$$
 does not depend on *x*. So, replacing hereby

x, and setting

$$
g(t) := \frac{f(x)f(t)}{f(tx)m(t)}, \quad t > 1,
$$

we get

$$
f(x) = g(t)f(x), \quad t, x > 1.
$$

Taking here $x = z_n$, $n \in \mathbb{N}$, as above, we have

$$
f\left(t z_n \right) = g\left(t \right) f\left(z_n \right), t > 1, n \in \mathbb{N}.
$$

Letting $n \rightarrow \infty$, the assumed precontinuity of f gives

$$
f(t) = bg(t), t > 1,
$$
\n(7)

Hence, making use of (6), we have

$$
g\left(tx\right) = g\left(t\right)g\left(x\right), t, x > 1, (8)
$$

that is *g* is multiplicative.

Applying in turn (5), the definition of P_f , (7) and (8) we get, for all $t, x, y > 1$,

$$
m(t) = \frac{P_f (tx, ty)}{P_f (x, y)} = \frac{f (tx) f (ty) f (xy)}{f (t^2 xy) f (x) f (y)}
$$

= $\frac{g (tx) g (ty) g (xy)}{g (t^2 xy) g (x) g (y)} = \frac{[g(t)]^2 [g(x)]^2 [g(y)]^2}{[g(t)]^2 [g(y)]^2}$
= 1

which completes the proof of (ii).

The implication $(ii) \Rightarrow (i)$ is obvious \cdot

Remark 5

Of course, the counterpart of the above result for function $f:(0,1) \rightarrow (0,\infty)$ also holds true.

Let
$$
f:(0,\infty) \to (0,\infty)
$$
 be an arbitrary function. The

two-variable functions $B_f: (0, \infty)^2 \to (0, \infty)$ given by

$$
B_{f}(x,y) := \frac{f(x)f(y)}{f(x+y)}, \ x, y > 0,
$$

is called a *beta-type function, and f* is referred to as its generator *([2])*.

Remark 6

Note that Barczy and Burai [5] have derived strong laws of large numbers and central limit theorems, among others, for a new type family of beta-type means considered in [3] and [4].

A function
$$
F: (0, \infty)^2 \to \mathbb{R}
$$
 is called *translative* with

respect to a function α : $(0, \infty) \rightarrow \mathbb{R}$, if

Remark 7

If F is translative with respect to α *then* α *is an additive function. If moreover F nonnegative, then there is a* $a \in \mathbb{R}$ $a \ge 0$ *such that* $\alpha(t) = at$ for all $t > 0$.

Proof. Indeed, for all $x, y, s, t \in (0, \infty)$ we have

$$
F(x+s+t, y+s+t) = F((x+s)+t, (y+s)+t) =
$$

$$
F(x+s, y+s) + \alpha(t) = F(x, y) + \alpha(s) + \alpha(t),
$$

and

$$
F(x+s+t, y+s+t) = F(x, y) + \alpha (s+t),
$$

whence $\alpha(s+t) = \alpha(s) + \alpha(t)$, so α is additive in $(0, \infty)$.

From the transitivity of *F* and the just proved additivity of α we have, for all $x, y, t > 0$ and $n \in \mathbb{N}$,

$$
F(x+nt, y+nt) = F(x, y) + \alpha(nt) = F(x, y) + n\alpha(t).
$$

Clearly, this equality and the assumed nonnegativity *F* exclude existence $t > 0 \alpha(t) < 0$.

Proposition 3

Let $f:(0,\infty) \to (0,\infty)$ be a (right) uniformly pre*continuous function and* $\alpha: (0, \infty) \to \mathbb{R}$ *be given functions. The following conditions are equivalent:*

(i) the beta-type function $B_f: (0,\infty)^2 \to (0,\infty)$ is translative with respect to the function α ;

(ii) $\alpha = 0$ and, for some $c > 0$, the function $\frac{1}{2}$ $\frac{b}{c}$ is an exponential function, i.e.

$$
cf(x+y)=f(x)f(y), x, y>0.
$$

Proof. Assume (i). In view of Remark 4, there is a real

number $a \ge 0$ such that $a(t) = at$ for all $t > 0$ and from the assumed transitivity B_f , we have

$$
\frac{f(x+t)f(y+t)}{f(x+y+2t)} = \frac{f(x)f(y)}{f(x+y)} + at, \ x, y, t > 0.
$$

Hence, for all $x > y > 0$, and $s > 0$,

$$
\frac{f(x)f(y+s)}{f(x+y+s)} = \frac{f((x-y)+y)f(s+y)}{f\bigl[[(x-y)+y\bigr]+(s+y)\bigr]} = \frac{f(x-y)f(s)}{f(x-y+s)} + ay.
$$

Setting here $s = z_n$, where (z_n) is a sequence such that is $z_n > 0$ all $n \in \mathbb{N}$, $\lim_{n \to \infty} z_n = 0$, satisfying the condition of the uniform right-precontinuity, we have

$$
\frac{f(x)f(y+z_n)}{f(x+y+z_n)} = \frac{f(x-y)f(z_n)}{f(x-y+z_n)} + ay, \quad n \in \mathbb{N}, 0 < y < x.
$$

Letting $n \rightarrow \infty$, and making use of the right continuity *f*, we conclude that the limit

$$
b := \lim_{n \to \infty} f(z_n) \tag{9}
$$

exists, is nonnegative, finite and

$$
\frac{f(x)f(y)}{f(x+y)} = b+ay, 0 < y < x.
$$
\n
$$
(10)
$$

or, equivalently, that

$$
\frac{f(x)f(y)}{f(x+y)} = b + a \min(x, y), x, y > 0.
$$

For arbitrary $x, z > 0$, choosing positive *y* such that $y < x$

and $y \leq z$, we hence get

$$
\frac{f(x)f(y)}{f(x+y)} = b + ay = \frac{f(z)f(y)}{f(z+y)},
$$

whence

$$
\frac{f(z+y)}{f(z)} = \frac{f(x+y)}{f(x)}.
$$

It follows that the function $g:(0,\infty) \to (0,\infty)$

$$
g(y) := \frac{f(x+y)}{f(x)}, \quad y > 0,
$$

is well defined. Since *f*,*g* are continuous and satisfy the Pexider functional equation

$$
f(x+y) = f(x)g(y), \, x, y > 0. \tag{11}
$$

By the symmetry of the left-hand-side x and y we have

$$
f(x+y)=f(y)g(x), x, y>0.
$$

Setting here $y = z_n$, where the sequence $y = z_n$ is chosen above, we have

$$
f(x+z_n)=f(z_n)g(x), n \in \mathbb{N}, x, y>0.
$$

Letting here $n \rightarrow \infty$, and using (9), we get

$$
f(x) = bg(x), \quad x > 0,\tag{12}
$$

which implies that $b \neq 0$. Hence, using (11), we obtain

$$
g(x+y)=g(x)g(y), x, y>0,
$$

which means that *g* is an exponential function. From (10) we get $a = 0$, and using (12) we conclude (ii).

The implication $(ii) \Rightarrow (i)$ is obvious.

Proposition 4

If the functions $f, g, h: (0, \infty) \rightarrow \mathbb{R}$ satisfy the equation

$$
f(x + y) = g(x) + h(y), \ x, y \in (0, \infty),
$$
\n(13)

then

$$
f = \alpha + b + c, \ g = \alpha + c, \ h = \alpha + b
$$

for some additive function $\alpha: (0, \infty) \to \mathbb{R}$ and $b, c \in \mathbb{R}$.

Proof. From (13), making use of the commutativity of addition, we have for all $x, y \in (0, \infty)$

$$
g(x) + h(y) = f(x + y) = f(y + x) = g(y) + h(x),
$$

whence, for all $x, y \in (0, \infty)$,

$$
h(x) = g(x) + h(y) - g(y).
$$

Choosing arbitrarily $y = y_0 > 0$, we get

$$
h(x) = g(x) + h(y_0) - g(y_0), \quad x > 0.
$$
 (14)

Setting this into (13) we get

$$
f(x+y)-\Big[g\big(y_0\big)+h\big(y_0\big)\Big]=\Big[g\big(x\big)-g\big(y_0\big)\Big]+\Big[g(y)-g\big(y_0\big)\Big], x, y>0,
$$

whence, setting

$$
\overline{f}(x) := f(x) - \Big[g(y_0) + h(y_0) \Big], \ \overline{g}(x) := g(x) - g(y_0), \ x > 0,
$$
\n(15)

we obtain

$$
\overline{f}(x+y) = \overline{g}(x) + \overline{g}(y), \ x, y > 0.
$$
 (16)

Hence, by induction we get

$$
\overline{f}\left(x_1 + \dots + x_n\right) = \overline{g}\left(x_1\right) + \dots + \overline{g}\left(x_n\right), \quad n \in \mathbb{N}, n \ge 2; x_1, \dots, x_n > 0,
$$

Whence

$$
\overline{f}(nx) = n\overline{g}(x), \quad n \in \mathbb{N}, n \ge 2; x > 0.
$$

Replacing hereby $\frac{x}{n}$, we get

$$
\overline{g}\left(\frac{x}{n}\right) = \frac{\overline{f}(x)}{n}, \ \ n \in \mathbb{N}, n \ge 2; x > 0,
$$

which implies that

$$
\lim_{n \to \infty} \overline{g} \left(\frac{1}{n} \right) = 0.
$$

Now (16) implies that \overline{g} is uniformly pre-continuous $z_n = \frac{1}{n}$. Of course, (16), \overline{f} is uniformly pre-continuous, and from (14) and (15) it follows that f, g, h are uniformly precontinuous with the same sequence $z_n = \frac{1}{n}$.

In view of Definition 1 (see also Remark 2), there exists a positive sequence (z_n) tending to 0 such that for every $x > 0$

$$
\lim_{n\to\infty} f\left(x+z_n\right) = f\left(x\right).
$$

Setting $y = z_n$ in (13) we have, for every $x > 0$,

$$
f(x+z_n)=g(x)+h(z_n), n\in\mathbb{N},
$$

and letting $n \rightarrow \infty$, we obtain conclude that

$$
f(x) = g(x) + b, \quad x \in (0, \infty), \tag{17}
$$

Where

 $b := \lim_{n \to \infty} h(z_n)$

exists and does not depend on *x*.

Similarly, taking $x := z_n$ in (13), we have

$$
f(z_n+y)=g(z_n)+h(y), n \in \mathbb{N},
$$

and letting $n \rightarrow \infty$, us obtain

$$
f(y) = c + h(y), \ y > 0,
$$
\n(18)

where

$$
c := \lim_{n \to \infty} g(z_n)
$$

is a real constant. From (13), (17), and (18), setting

 $a := b + c$.

we get

$$
f(x+y)-(b+c)=\big[f(x)-(b+c)\big]+\big[f(y)-(b+c)\big],\ x,y\in(0,\infty),
$$

which shows that $\alpha := f - (b + c)$ is an additive function, and

$$
f = \alpha + (b + c).
$$

Hence, from (17) we get

$$
g(x) = \alpha(x) + c, \ x \in (0, \infty),
$$

and from (18),

$$
h(x) = \alpha(x) + b, \ x \in (0, \infty),
$$

Which completes the proof.

Final Remark

Following Azad [9] one could try to consider the fuzzy versions of precontinuity.

Acknowledgment

The Author wishes to thank the anonymous referee for their valuable remarks.

References

- 1. Mashhour AS, Abd El-Monsef ME, El-Deep SN. On pre-continuous and weak pre-continuous mappings. Proc. Math Phys Soc Egypt No. 1982; 53: 47-53.
- 2. Himmel M, Matkowski J. Beta-type functions and the harmonic mean. Aequat Math. 2017; 91(6): 1041-1053.
- 3. Himmel M, Matkowski J. Beta-type means. J Differ Equ Appl. 2018; 24(5): 753–772.
- 4. Himmel M, Matkowski J. The logarithmic Cauchy quotient means. J Differ Equ Appl. 2020; 26(5): 609–624.
- 5. Barczy M, Burai P. Limit theorems for Bajraktarević and Cauchy quotient

means of independent identically distributed random variables. Aequationes Math. 2022; 96(2): 279–305.

- 6. Baker CW. Slightly Pre-continuous Functions, Acta Mathematica Hungarica. 2002; 94: 45–52.
- 7. Kuczma M. An Introduction to the Theory of Functional Equations and Inequalities, Uniwersytet Śląski, PWN, Warszawa-Kraków, 1985.
- 8. Aczél J. Lectures note on functional equations and their applications, Academic Press, New York and London. 1966.
- 9. Azad KK. On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity. J Math Anal Appl. 1981; 82: 14–32.

Discover a bigger Impact and Visibility of your article publication with **Peertechz Publications**

Highlights

- Signatory publisher of ORCID
- Signatory Publisher of DORA (San Francisco Declaration on Research Assessment) $\sigma_{\rm eff}^{\rm th}$
- $\hat{\mathcal{L}}$ Articles archived in worlds' renowned service providers such as Portico, CNKI, AGRIS, TDNet, Base (Bielefeld University Library), CrossRef, Scilit, J-Gate etc.
- ❖ Journals indexed in ICMJE, SHERPA/ROMEO, Google Scholar etc.
- OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) \hat{Q}
- Dedicated Editorial Board for every journal $\dot{\phi}$
- Accurate and rapid peer-review process $\sigma_{\rm eff}^{\rm th}$
- Increased citations of published articles through promotions $\mathcal{L}_{\mathcal{S}}$
- $\Delta \Delta \sim 1$ Reduced timeline for article publication

Submit your articles and experience a new surge in publication services (https://www.peertechz.com/submission).

Peertechz journals wishes everlasting success in your every endeavours.