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Abstract

The French government has recently decided to increase the Photovoltaic (PV) capacities to reach 35GW by 2028 in all french territories, the European territory, and 
overseas territories such as Reunion Island in the Indian Ocean. However, integrating growing numbers of PV power installations and microgrids onto the grid can result in 
larger-than-expected fl uctuations in grid frequency. This is due to PV power output that is not only a function of the operating temperature and solar irradiation but also of 
other environmental parameters. In this paper, only two environmental parameters are considered in the European zone and when the Engle & Granger statistical method 
is used, a relationship between variables such as photovoltaic power output and solar irradiation at a different level is obtained. The fi nal relationship without suspicious 
heteroscedasticity is determined. The model is formulated on the basis of photovoltaic real conditions statistical approach and is more realistic than steady approach 
models. The Engle & Granger method does not distinguish several cointegration relationships when more variables are considered. For the overseas zone, we added other 
measured environmental variables and applied a more robust statistical method known as the Johansen vector error correction model (VECM) cointegration approach. In 
the VECM model, for N explanatory variables and for N > 2, we established a long-run equilibrium relationship that has been tested and the outcome is more than reliable 
when comparing the model to measured data.
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Introduction

Renewable energies [1,2] are strongly developed to 
decarbonize our way of life in the energy sector and electricity 
production. The goal of this research is to contribute to the 
improvement of the short and medium-term predictability of 
Photovoltaic (PV) power production. The study is based on an 
analysis and prediction model (b) of PV production, involving 
spatial and temporal meteorological parameters. Power output 
(P) from PV systems in outdoor conditions is substantially 
infl uenced by climatic parameters such as solar irradiance (G) 
and module temperature(T). Integrating growing numbers of 
PV power installations and microgrids [2] onto the grid can 
result in larger-than-expected fl uctuations in grid frequency. 
This is due to PV power output that is not the only function of 
the operating temperature and solar irradiation but also of other 
environmental parameters. In this paper, the geographical 

distribution of PV output considering the module temperature 
effect and irradiation and other environmental parameters on 
PV system performance is considered in two different French 
territories: the European territory and an overseas territory 
such as Reunion Island in the Indian Ocean. The goal is to 
determine a linear relationship between PV power output and 
the environmental parameters from time series data. 

For the European territory, we investigated rigorous 
statistical methods such as Engle & Granger (EG) [3,4], for 
stationary series to determine the estimate regression between 
variables P, G & T. In the EG method, when PV explanatory 
variables are nonstationary then the fi rst difference study must 
be applied as the fi rst difference transformation may make a 
nonstationary time series to become a stationary series to reach 
the fi nal PV equation. Moreover, when outliers are suspected in 
the model, the EG method is put forward to determine the most 
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appropriate model. We investigated the dependent variable P 
on explanatory variables such as G and T. We fi rst applied the 
Augmented Dickey & Fuller (ADF) [5,6], to our time series. The 
ADF test is a unit root test for stationarity. In this study, a visual 
diagnosis tool known as correlogram [7,8], is used to identify 
the fi rst step for stationary test computing the autocorrelation 
function and the partial autocorrelation function. When 
serial correlation in residuals is detected, we fi rst applied the 
Goldfeld-Quandt(GQ) [9], test when heteroscedastic variance 
is related in variables followed by the Durbin Watson (DW) [3] 
test in the regression model. 

The downside of the EG method is that it does not distinguish 
several cointegration relationships for N simultaneous variables 
invoking up to N-1 cointegration relations. To overthrow such 
a situation, a more robust statistical method is suggested 
known as the Johansen vector error correction model (VECM) 
[10-12]. The Johansen test can be considered as a multivariate 
generalization of the ADF test, but the former is a strategic 
test that makes it possible to estimate all cointegrating vectors 
when more than two variables are considered. For the overseas 
and tropical zone, the Johansen VECM model is well adapted 
and we considered more explanatory variables such as wind 
speed(Wind) and humidity (Humi) that are added to G & T. 

Therefore, this paper is divided into two parts comparing 
the model obtained to measured data for the two French 
territories: the European zone and the Tropical zone.

For the European zone, the EG model is determined for 
data from the GREEN platform of the Physics department of 
the University of Lorraine in Metz in northeast France. The PV 
design of the GREEN platform [13] is a grid-connected system. 
Six PV polycrystalline modules of SCHÜCO technologies are 
connected in a series wiring pattern and mounted on the south-
southeast vertical wall of the platform building. Each module 
has a peak power of 205 Wp, a tilt angle of 60°, low ventilation, 
and is connected to an SCHÜCO inverter for a power level up to 
1 kW. For the European zone, only data such as PV power out, 
solar radiation, and module temperature should be considered 
in the EG method to determine the estimated regression 
between these variables. The resulting model is then compared 
to real data to show a good agreement between the model and 
measured PV output data. 

For the tropical zone on Reunion island in the Indian 
Ocean, the Johansen VECM model is performed to determine 
the regression relationship. The PV system in Reunion island 
is a grid-connected system. The modules that make up the 
PV plant are at a tilted angle of 21°, the same as Reunion 
Island latitude. The polycrystalline PV module of 180W each is 
equipped with solar irradiance, cell temperature, and wind and 
humidity sensors. 

Other environmental parameters such as wind speed and 
humidity are considered in addition to solar radiation and 
module temperature for the tropical zone. The EG method is 
not suitable for the tropical zone as more than 2 explanatory 

variables are considered, therefore the VECM model should 
be considered. The fi nal long-term relationship obtained 
is compared to the recorded power output in real outdoor 
conditions. 

This paper is organized as follows. Section 2 is the 
outline of correlograms for solar irradiance as well as its fi rst 
difference to identify the stationary series. Still in that section, 
as the European zone is mainly focused on the Engle & Granger 
method, the EG principle is explained and applied to PV data 
from the Green platform in Metz. Section 3 describes the main 
approach of the Johansen VECM cointegration technique and 
the model is applied to compare PV power output on Reunion 
Island. Finally, a conclusion is proposed in section 4 where the 
perspective side is also discussed.

Correlogram and engle & granger model

A correlogram is a visual diagnosis for the stationary test. 
For example, Table 1a is the solar irradiance series correlogram 
for data from the Green platform. In the autocorrelation column, 
spikes are outside the two lines indicating no stationarity. 
Moreover, the Q-stat was given as in 1:

2ˆ
( 2)

1

m kQ T T
T Kk


  

                  (1)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1a: Solar irradiance series correlogram for data from the Green platform.
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Where k is the number of lags, T is the total number of 
observations, m is the lag length, and k̂ is the estimated 
values at lag k. Table 1b is the fi rst difference solar correlogram. 
Similar diagrams have been obtained respectively for power 
output and module temperature but are not indicated here. 
Table 1b, indicates that stationary series is obtained for the 
fi rst difference and the EG principle should be applied at a level 
as indicated below.

Engle & granger model

The EG test for cointegration is a three-step procedure. 

First step: it is necessary to ensure that the fi rst differences 
of the corresponding Zt and Xt series are stationary series and 
where Zt is regressed on Xt.

Second step: let et be the residual of the regression of Zt 
with respect to Xt given as follows:

Zt = aXt + b + et                (2)

and if et is stationary then Zt and Xt series are cointegrated 
and the relationship is usually called long-run equilibrium.

Third step: Error Correction Model (ECM) to reconcile the 
short-run behavior with long-run behavior.

We applied the fi rst and second steps and computed the 
regression as each variable is stationary in difference and the 
resulting equation is given as follows :

0.969 0.500 0.105P G T                    (3)

From the resulting table of the regression difference 
data, we noted that the corresponding p - value of ∆T and 
constant term C are not statistically signifi cant because their 
corresponding probability value (0.4077, 0.9953) are greater 
than the usual signifi cance level of 1%, 5%, and 10%. 

0.969P G                   (4)

We thus removed ∆T and 0.105. The R value is more than 
94%. The corresponding plot of the ∆P against ∆G is illustrated 
in Figure 1.

From Figure 1, we deduced that scattered values and the 
slight intercept at ∆P axis are indications of heteroscedasticity 
[14]. We, therefore, applied the Goldfeld quant test followed 
by the Durbin Watson D-Stat test but the regression model 
was still not appropriate and we deduced that the ECM must 
be applied.

The ECM which is the third step of the EG model is applied 
to equation 2 and is given as follows:

0 1P G e tt                        (5)

Where ∆ is the fi rst difference operator, t is a random 
error term, et-1 is the equilibrium error term, and if  contains 
a negative sign meaning that a run long equilibrium exists 
among the variables. After computing, the characteristic terms 
of the ECM regression without the constant term are illustrated 
in Table 2. 

The Residcoint(-1) is the et-1 value with a negative sign 
validating the long-run relationship between P and G . The 
fi nal relationship between variables is deduced from Table 2.

0.966 0.601 1P G et                     (6)

Discussion

For the EG statistical method, we investigated the 
dependent variable P on explanatory variables such as G and T 
and showed that the fi rst difference of P is a function of only 
solar irradiance at the level. We showed that the model equation 
is in agreement with experimental measurements. However, 
when more explanatory variables are considered the EG is no 
longer suitable and another model such as the Johansen VECM 
cointegration model must be applied. This is discussed in the 
next section.

Johansen VECM cointegration

In this section, we are considering the Johansen VECM 
cointegration applied to data from a grid-connected PV 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1b: Stationary series is obtained for fi rst difference and the EG principle 
should be applied.
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system on Reunion island in the Indian Ocean. The Johansen 
VECM cointegration test can be considered a multivariate 
generalization of the ADF test and makes it possible to estimate 
all cointegrating vectors when more than two variables are 
considered. 

The Johansen approach

The general form of the VAR (p) model, without drift, is 
given as in equation 7

            ..     1 1X A X A Xpt t p tt                       (7)

Where π is the vector-valued mean of the series, Ai is 
the coeffi cient matrices for each lag, and t is a multivariate 
white noise term. The vector error correction model (VECM) is 
obtained by differencing the series as given in equation 8.

              ..      1 1 1X AX X Xpt t p tt t                           (8)

Where ∆Xt = Xt - Xt-1 is the differencing operator, A is the 
coeffi cient matrix for the fi rst lag, and j are the matrices for 
each differenced lag. The matrix rank is respectively, Xt (N,1), 
A (N, N), and Xt -1 (N,1)……. Ap (N, N), Xt (N,1), and t (N,1), 
where N is the number of variables of nonstationary I(1). When 
matrix A = 0 there is no cointegration but for multiple linear 
combinations of time series the eigenvalue decomposition of A 
is carried out.

This fi rst difference VAR (2) model can be written in a 
vector error correction model (VECM) as a function of only Pt-1 

as in equation 9: 

          2 1 1X A X Xt tt t                         (9)

Where    –1 2 A A I    and I is the unit matrix. Equation 9 
can also be written as a function of Pt-1 and Pt-2 as given in Eq.10.

           1 1 2P A I X Xt tt t                        (10)

If the coeffi cient matrix ∏ has reduced rank r < k, where k 
is the vector variables of I (1), r is the number of cointegration 
equations. The matrix ∏ can be written in terms of a vector 
of adjustment parameters  and a matrix of cointegration 
vectors’ given by equation 11.

 ' '     ,  where   is 0 P It                 (11)

Where  is an (N,r) matrix with r < N, and ’ has r 
cointegration vectors such that 0 < r < N as to highlight the 
VECM model.

The Johansen test and estimation strategy which is a 
maximum likelihood test make it possible to estimate all 
cointegrating vectors for N variables, which all have unit 
roots and there are at most N-1cointegrating vectors. The 
Johansen test provides estimates of all cointegrating vectors 
if a cointegration relationship does exist, and a rank test is 
useful. Thereby, if:

Rank (∏) = 0, then r = 0 meaning that none cointegration 
relationship and VECM cannot be applied,

Rank (∏) = r, meaning that variables are cointegrated and 
the number of cointegration relationships is equal to r. VECM 
model can be estimated.

Rank (∏) = N, meaning that none cointegration relationship.

Johansen's procedure is based on the maximum Eigenvalue 
and Trace tests that are conducted on the error correction 
model foundation. For both test statistics, the initial Johansen 
test is a null hypothesis test of no cointegration against the 
alternative of cointegration. 

The fi rst test of maximum Eigenvalues is to determine 
whether the rank of the matrix is zero, and the null hypothesis 
is rank (∏) = 0 whereas the alternative hypothesis is rank (∏) 
= 1. 

The second test of Trace is to determine whether the rank 
of the matrix is r0, the null hypothesis is rank (∏) = r0 and the 
alternative hypothesis is that r0 < rank (∏) ≤ r, where r is the 
maximum number of possible cointegration vectors. 

For the VECM model in this study, variables such as wind 
speed(Wind), and humidity (Humi) are two more explanatory 
variables in addition to G & T in the EG section and noted 
respectively as Irra and Temp in this section. Different 

Figure 1: Regression of P against G.

Table 2: ECM regression data without constant.

Variable Coeffi  cient Std. Error t-Statistic Prob. 

ResidCoint(-1)) - 0.601050 0.049178 -12.22193 0.0000

DELTA G 0.966657 0.008066 119.8493 0.0000

R-squared 0.977102 Mean dependent var 0.949972

Adjusted R-squared 0.977037 S.D. dependent var 140.1690

S.E. of regression 21.24035 Akaike info criterion 8.955253

Sum squared resid 160610.3 Schwarz criterion 8.976932

Log likelihood - 1600.990 Hannan-Quinn criter. 8.963875

Durbin-Watson stat 2.062846 F-statistic 7578.573

Prob(F-statistic) 0.000000    
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forecasting classifi cations have been proposed and in our 
study, we should consider the short-term forecast, that is 
hourly, several hours up to a day ahead to guarantee system 
commitment and scheduling.

The Johansen VECM test for cointegration is a fi ve-step 
procedure. 

- Step 1: Performing series stationarity (correlogram & ADF) 
tests to determine whether there is a cointegration relationship 
or not. 

- Step 2: If the step1 is true, meaning that series are of the 
same order of integration and cointegration is likely, therefore 
VECM model can be estimated. Determining the lag length 
using Akaike and Schwarz criteria [3,15]. 

- Step 3: Implementing the Johansen test to determine the 
number of cointegration relationships. 

- Step 4: Identifying the cointegration relationships or 
long-term relationships between variables. 

- Step 5: Estimating the VECM model by maximum 
likelihood method, test validations by visual diagnostic or 
correlogram, and checking that residuals from the model are 
white noise. 

A vector autoregression Pt of 5 variables lagged 2 is given 
in equation 12:

1 1 2 2P A P A Pt tt t                  (12)

The matrix form is illustrated as follows :

 
   

0.738(Power  - 3521,54 Wind  ) 2.764 Irra 189,05 29.004t-1 t-1 t-1

16.52 3493.349 0.2891 1 1 1 1

P

Temp Wind Humi Windt t t t t

     

      

  
       

                (15)

For ∆P = Pt – Pt-1, and as each variable at (t-1) is equal to 
each variable at t , we deduced the long-term relationship as 
in equation 16:

3.74 36.38 833.33 4758.96 1P Irra Temp Wind Humit t t t t t      

                (16)

To determine the residual of the cointegration equation we 
performed distinct tests such as the Wald test, the Lagrange 
multiplier test, the jarque bera statistic and fi nally the CUSUM 
test indicating that the residual is a random or white noise 
process. These tests can be easily understood in literature [3]. 

In the next section, the model obtained is compared to the 
measured data.

               (13)

We computed the different steps up to step 3 where the 
number of cointegration relationships is based on Trace and 
Eigenvalues [14,16], tests. For this study, this test is performed 
with the deterministic trend assumption, that is no intercept or 
trend in the cointegration equation or VAR test. The result after 
computing the Johansen VECM test with one lagged indicates 
four cointegration equations. These are indicated in Tables 3a 
and table 3b are the error correction coeffi cients.

With data, respectively from Tables 3a and 3b, we identifi ed 
the 4 equations as follows :

CoinEq1 = (Power t-1 – 3521,54 Wind t-1)          (14a)

CoinEq2 = (Irra t-1 – 189,05)            (14b)

CoinEq3 = (Temp t-1 – 16.52 Wind t-1)           (14c)

CoinEq4 = (Himi t-1 – 0.289 Wind t-1)           (14d)

The ∆P equation is given as follows :

Table 3a: Four Cointegration Equations.

Cointegration Eq: CointEq1 CointEq2 CointEq3 CointEq4

Power(-1) 1.000000 0.000000 0.000000 0.000000

IRRA(-1) 0.000000 1.000000 0.000000 0.000000

TEMP(-1) 0.000000 0.000000 1.000000 0.000000

HUMI(-1) 0.000000 0.000000 0.000000 1.000000

WIND(-1) -352.536 -189.051 -16.5261 -0.28973

(115.133) (6.10357) (0.43571) (0.00856)

[-30.5867] [-30.9738] [-37.9295] [-33.8617]

Table 3b: Error correction coeffi  cients.

Error Correction D(POWER) D(IRRA) D(TEMP) D(HUMI) D(WIND)

CointEq1
-0.738061
(0.44968)
[-1.64130]

0.003671
(0.02418)
[0.15180]

0.000668
(0.00069)
[0.96372]

-6.30E-06
(9.4E-06)
[-0.66729]

-0.000101
(0.00011)
[-0.90932]

CointEq2
2.764963
(8.49770)
[0.32538]

-0.633466
(0.45697)
[-1.38624]

-0.020299
(0.01309)
[-1.55056]

-6.30E06
0.00018

[-0.35314]

0.001919
(0.00211)
[0.91023]

CointEq3
29.00405
(57.8867)
[0.50105]

1.202475
(3011288)
[0.38629]

-0.168783
(0.08918)
[-1.89266]

0.007478
(0.00122)
[6.15305]

0.014007
(0.56441)
[0.97515]

CointEq4
3493.349
(2274.49)
[1.53588]

170.2571
(122.312)
[1.39200]

10.64644
(3.50397)
[3.03840]

-0.318148
(0.04776)
[-6.66201]

1.006675
(0.56441)
[1.78360]

D(POWER(1))
-0.061329
(0.34563)
[-0.17744]

0.000548
(0.01859)
[0.02947]

-0.000373
(0.00053)
[-0.70012]

8.67E-06
(7.3E06)
[1.19434]

0.000102
(8.6E-05)
[1.18555]

D(IRRA(1))
-0.385590
(6.98093)
[-0.05523]

-0.119264
(0.37540)
[-0.31770]

0.009972
(0.01075)
[0.92728]

-4.70E-05
(0.00015)
[-0.32055]

-0.0011840
(0.00173)
[-1.06198]

D(TEMP(1))
-41.98734
(79.2692)
[-0.52968]

-1.471655
(4.26273)
[0.34524]

-0.312499
(0.12212)
[-2.55899]

-0.0004109
(0.00166)
[-2.46904]

-0.012250
(0.01967)
[-0.62278]

D(HUM(-1))
 
 

-2443.284
(2670.53)
[-0.91491]

-9171841
(143.609)
[-0.63867]

-4715188
(4.11409)
[-1.14611]

-0.009332
(0.05607)
[-0.16643]

-0.646033
(0.66268)
[0.97487]

D(WIND(-1))
 
 

-388.2601
(219.111)
[-1.77198]

-22.43381
(11.7828)
[-1.90395]

-0.629913
(0.33755)
[-1.86612]

-0.003435
(0.0046)

[-0.74676]

-0.025043
(0.05437)
[-0.46059]
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Comparing Johansen model to PV output in reunion is-
land

The Johansen VECM model is applied to forecast PV power 
output by comparing the model data to measured data in real 
outdoor conditions. This was done on a yearly basis from 2013 
to 2016 for a PV grid connected system in Reunion Island in the 
Indian Ocean but in this study, we are putting forward a daily 
comparison upon one month. This is represented in Figure 2, 
where the blue (series 2) and green (series 1) colors of the bar 
chart are respectively measured power output and Johansen 
model power output for each day of the month of march 2016. 

The model was also applied for an hourly short-term 
forecast as illustrated in Figure 3. 

The orange and blue (series1) colors are respectively the 
Johansen model power output and measured power output.

Conclusion

Power output from photovoltaic (PV) systems in outdoor 
conditions are substantially infl uenced by climatic parameters 
such as solar irradiance and module temperature. One of the 
objectives of this paper consisted of applying a statistical 
method of time series data to identify the most important 
on-site climatic and environmental parameters that infl uence 
PV output variability. It is strongly hard to estimate the 
impact of PV output variability on the power grid stability 
unless a good comprehension of the parameters controlling 
this variability. Many OLS regression models relating to PV 

variables have been proposed in the literature but most of 
them had led to spurious results. In this paper, two robust 
statical models have been used in two French territories. The 
Engle & Granger statistical method is applied in the European 
zone and the VECM Johansen method is applied to the tropical 
zone on Reunion island in the Indian Ocean. In this study, we 
showed that if only these two parameters are considered in the 
European zone and mainly in the East of France, then the Engle 
& Granger method is a rigorous method for the long term-term 
forecast of PV power output. However, when more explanatory 
variables such as wind speed and humidity are considered in 
addition to solar irradiation and temperature, the EG method 
is unable to distinguish several cointegration relationships. 
We showed that a more robust technique such as the Johansen 
VECM cointegration must be applied to the Reunion island 
and can be an accurate technique for short-term forecast of 
PV power output. From the perspective side in the future, a 
Spatio-temporal model using recurrent neural networks with 
persistent short-term memory (LSTM) should be developed 
to produce effi cient forecasts over the whole Reunion island. 
The developing methodologies should eventually offer an 
opportunity to provide additional guarantees to the network 
manager. If in the future effi cient forecasting solutions become 
widespread, this opportunity should open up the market beyond 
the current regulatory threshold of 35% renewable energy 
as expected in Reunion Island. Moreover, the mathematical 
aspects behind the statistical theories should be computed 
inline code using Python 3.10 and integrated on an FPGA chip 
in order to be applied at minute sampling time to make more 
accurate daily predictions.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Comparing power daily power output between model and measured data.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Comparing hourly power output between model and measured data.
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