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Abstract

Two methods are presented for determining advanced combinatorial identities. The fi rst is based on extending the original identity so that it can be expressed in terms 
of hypergeometric functions whereupon tabulated values of the functions can be used to reduce the identity to a simpler form. The second is a computer method based on 
Koepf's version of the Wilf-Zeilberger approach that has been implemented in a suite of intrinsic routines in Maple. As a consequence, some new identities are presented. 
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Introduction

According to a Vimeo talk delivered at Rutgers in 2014, 
Weintraub [1] claims the following result: 
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1
( 1) =1,

n
n j

j

n n j
j n

    
   

  
             (1.1)

can only be proved by using the Wilf-Zeilberger approach. As 
stated in the talk, Weintraub was unable to solve the problem 
by himself initially. It was eventually solved by his student, 
Li. In fact, Li is given credit for the solution in the article 
stemming from the talk [2]. The point of this note is to show by 
way of examples that one can often extend existing techniques 
to solve advanced combinatoric identities such as (1.1), even 
though, as will be seen here later, the Wilf-Zeilberger approach 
is an extremely powerful method when utilized in the Maple 
mathematical software package.

Proof

In this section, we shall prove (1.1) by extending the result to 
a Gaussian hypergeometric form. However, before presenting 
a general proof, it should be mentioned that (1.1) can be shown 
to hold numerically by programming the Left-Hand Side (LHS) 
in Mathematica [3] as 

F[n_] := Sum[(-1)  (n - j) Binomial[n, j] Binomial[n + j + 

1, n], {j, 0, n} ]. 

If one types 

Timing[F[389]], 

then following output is produced 

{0.002959, 1}. 

This means it takes a Venom laptop with 64 Gb RAM almost 
0.003 CPU seconds to compute that the sum yields unity when 
n = 389. Obviously, the calculation will slow down drastically as 
n increases.

To prove that (1.1) holds for all values of n, we note that 
the sum on the LHS can be extended to infi nity since 1/(n-j)! 
in the fi rst binomial factor vanishes j ≥ n. Then the LHS can be 
expressed as 
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                (2.1)

In obtaining this result, the refl ection formula for the 
gamma function or No. 8.334 in [4] has been applied. This 
yields 
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By multiplying and dividing (1.1) by (n+1), one obtains 
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         (2.3)

Thus, by extending the fi nite sum to infi nity on the LHS of 
(1.1), we have been able to express the LHS of the combinatorial 
identity as a particular case of a Gaussian hypergeometric 
function 2F1(a,b;c;1). Often these reduce to simple analytic 
results when their parameters appear in tables of the special 
functions. However, in this case, if we scan the table of 
Gaussian hypergeometric functions in Prudnikov, et al. [5], 
then we fi nd that there is no listing for the parameters, a = 
-n, b = n+2 and c = 2. The nearest one can get to this Gaussian 
hypergeometric function in (2.3) is the case where a = -n, b = 
n+2 and c = 1. That is, according to No. 7.3.1.188 on p. 467 of [5], 
we have 2 1( , 1;1; )= (1 2 )nF n n z P z   , where Pn(1-2z) represents 
a shifted Legendre polynomial since the argument is 1-2z. 
This means that in order to derive (1.1), we need to investigate 
whether (2.3) can be expressed in terms of shifted Legendre 
polynomials.

Returning to (2.1), one can re-write it as 
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                (2.4)

In order to handle the j term in the numerator, one splits 
the RHS of (2.4) into two separate contributions, one that will 
result in a Gaussian hypergeometric of unity and the other 
becoming a simple integration of a Gaussian hypergeometric 
function. Therefore, (2.4) can be expressed as 
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          (2.5)

The fi rst sum on the RHS of (2.5) represents the Gaussian 
hypergeometric function 2F1(-n, n + 1;1;1) or the z = 0 case of the 
shifted Legendre polynomial of the index n mentioned above. 
As a consequence, we fi nd that Pn(-1 = (-1)n. Multiplying by the 
(-1)n factor outside the fi rst term on the right-hand side (RHS) 
of (2.5) yields unity as given on the RHS of the identity of (1.1). 
Therefore, to derive (1.1), we need to show that the second sum 
on the RHS of (2.5) vanishes. This sum can be expressed as 
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Hence the integral is now over the Gaussian hypergeometric 
function in [5]. In other words, we have 
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Carrying out a change of variable, namely, y = 1 - 2x, converts 
the integral to one over Pn(y) between -1 and 1. By employing 
[6], we arrive at 
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( ) ( / ) = ,
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

 
           (2.8)

where the Pochhammer symbol, ( ) = ( )/ ( )n n     , a  and 
  are greater than zero. Moreover, in our case of interest, 

a = 1 and  = 1, which means the integral vanishes due to the 
appearance of (1 - ) the denominator on the RHS. Therefore, 
contrary to Weintraub in [1], the identity has been proved 
without having to apply the Wilf-Zeilberger algorithm. In 
addition, from (2.5) we have 

1

2 10
( , 1;1; ) =0.F n n x dx               (2.9)

More advanced  examples

In this section, we shall present an example where both 
methods can be used to establish a combinatorial identity. When 
applying the Wilf-Zeilberger algorithm, we shall use routines/
instructions in Maple, which may appear to the reader as a 
black box. By the application of the extended hypergeometric 
function method described in the previous section, it is hoped 
that the reader will develop the confi dence to apply the Wilf-
Zeilberger approach to situations where it is no longer a simple 
matter to employ standard techniques.

Theorem 3.1 

For positive integer values of m, the following combinato-
rial identity holds:

1
=0

1( 1) ( )!
= ( 2) .

!( )!( 1)!

jm

q
j

m qi j
i m q

j j m i j m q m 

   
   

       
  

              (3.1)

The above result arose in a study of the properties of 
Fibonacci polynomials, which will soon be published.

Before presenting the proof, let us verify (3.1) numerically. 
After all, if one can show that the result does not hold 
numerically, then there is no point setting about fi nding a 
proof. First, we program the LHS by using the Sum routine in 
Mathematica [3] as follows: 

F[m_, q _, I _] := Sum[(-1)


j (i - j)!/(j! (m - j)! (i - j - m 

- q + 1)!), {j, 0, m}]. 

Next, we program the RHS with the aid of the Pochhammer 
and Binomial functions in Mathematica. Thus we set 

F2[m _, q _, I _] := Binomial[m + q - 1, m] Pochhammer[i 
- m - q + 2, q - 1]. 

Therefore, as long as m is an integer, we should observe 
that both instructions should give identical values for the same 
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values of m, q and i. For example, putting m = 4, q = 1/3 and i = 
7/5, and using the Simplify routine gives

In[9]:= Simplify[F[4, 1/3, 7/5]], 

Out[9]= 1/24 ((-(13/5))!/(-(89/15))! - (4 (-(8/5))!)/

(-(74/15))! + (6 (-(3/5))!)/(-(59/15))! - ( 4 (2/5)!)/(-(44/15))! 

+ (7/5)!/(-(29/15))!). 

In NumberForm this yields a value of 
-0.02144385036349257. On the other hand, if we type 

In[12]:= F2[4, 1/3, 7/5],

Out[12]= (35 Gamma[-(8/5)])/(243 Gamma[-(14/15)]).

In NumberForm this yields a value of -0.0214438503634 
9148. In both cases, results agree up to the last three decimal 
places. The slight difference in the numerical results is due to 
machine precision being invoked in number form. Now we turn 
to the proof of Theorem 3.1.

Proof: We shall fi rst prove this lemma by extending the 
LHS of (2.8) to Gaussian hypergeometric functions. In the 
second proof, we shall make use of Zeilberger's algorithm 
to demonstrate that a computer approach is just as valid as 
standard analytic methods in proving combinatorial identities. 

Method 1

We begin by extending the summation over j on the LHS 
of (2.8) to infi nity, which has no effect on the result. With the 
aid of the refl ection formula for the gamma function or No. 
8.334(3) in [4], we can make the following substitutions in the 
LHS: 

( )( )! ( ) !=( 1) = ,
( )! ( ) ( ) !
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m j j i i m


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
   

          (3.2)

and 

( 1)1 =( 1) .
( 1)! ( 1)!

jj
m q i

i j m q i m q

  


                 (3.3)

Then the LHS can be re-written as 

2 1

!l = ( , 1; ;1).
!( 1)!

ihs F m m q i i
m i m q

    
            (3.4)

Next, we employ Gauss's identity for 2F1 hypergeometric 

functions when z=1, i.e., No. 9.122 in [4]. This yields 

   
    
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q iF m m q i i
q m m i

q m i m
q i

         (3.5)

The last member in the above result has been obtained by 
applying the refl ection formula for the gamma function on this 
occasion to the intermediate member. By substituting the last 
result for the hypergeometric function in (3.5) and carrying out 
a little algebra, we obtain the RHS of (3.1).

Method 2

To apply the Wilf-Zeilberger algorithm, fi rst described in 
[7] and discussed at length in [8], we set 

, ,
=0

( 1) ( )!
= .

!( )!( 1)!
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i q m
j

i j
A

j j m i j m q
 

                 (3.6)

Now we replace ( )!/ ( 1 1)!i j i j m      by

( 1) / ( 1)!i j i j m q        , which, in turn, means that it is 

in a form where one can apply Zeilberger's algorithm [9] to the 
sum. Next one programs the sum into Maple by using the sum 

command as follows:

 
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 

0
j(-1) GAMMA(1+i + j)> sum , j = ..m

j!(-j +m)!GAMMA(2+i - j - m - q)  

Then we type in the command with (sumtools): . 

This is a suite of commands for computing both defi nite and 
indefi nite sums. Koepf's version [8] of Zeilberger's algorithm 
appears as the sumrecursion routine in this suite. It calculates 
a downward recurrence relation for the above sum. Therefore, 
typing 

> ( 1) *G (1 )/jsumrecursion AMMA i j  

     ( !*( )!*G (2 )), , ( )j j m AMMA i j m q j A m

results in the following output:

-(-1 + m + q) (2 + i - m - q) A(m - 1) + A(m) m (i - m + 1).

By replacing m by m+1, we can express the above fi rst order 
recurrence relation or difference equation with respect to m in 
a better form as 

      , , 1 , ,( 1)( ) ( )( 1) = ,0i q m i q mm i m A q m i q m A             (3.7)

with the initial value or m = 0 value of both sides of (3.1) given 
by 

, ,0

!= .
( 1)!i q

iA
i q             (3.8)

The recurrence relation given by (3.7) can be solved easily 
by inspection. Therefore, we fi nd that Ai,q,m is given by 

, , 1

1
= ( 2) ,i q m q

m q
A i m q

m 

  
   

 
                           (3.9)

which represents the RHS of (3.1). 

Now we turn our attention to a more complicated 
combinatorial sum, where the representation of the summand 
in terms of hypergeometric function is somewhat problematic, 
and using the Wilf-Zeilberger algorithm as implemented in 
Maple is the better option.

In the course of studying repeated integrations of the 
Fibonacci polynomials, we came across the following sum: 
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The question is whether the above sum can be reduced to a 
simpler form.

It should be mentioned that (3.10) can be expressed as 
the sum of two related 3F2 hypergeometric functions by 
extending the sum over p to infi nity as in previous examples. 
Consequently, (3.10) can be expressed as 
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               (3.11)

Next, we replace all the ratios of the gamma functions with 
negative p arguments with ratios with positive p arguments 
using the refl ection formula or No. 8.334 in [4]. For example, 
we write !/ ( )!=( 1) ( ) / ( )pq q p p q q      , then 
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and so on for the other ratios. As a consequence, (3.11) becomes 
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              (3.13)

In the above equation, the infi nite sums over p represent 
two different 3F2 hypergeometric functions with the argument 
equal to -1. Thus, (3.13) reduces to 
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            (3.14)

As in the case of Theorem 3.1, we can obtain a much 
simpler form of (3.10) by inserting it into Maple and applying 
Zeilberger's algorithm using the sumrecursion routine. The 
output generated by this routine is: 

-(2 + i - 2*l + q)*(1 + i - 2*l + q)*M(l - 1) + M(l)*l*(1 + 
i - l). 

Now we replace l by l+1 and set the output equal to zero. 
Therefore, we arrive at the following recurrence relation: 
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where the initial value is given by 
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Again, this can be solved easily and yields 
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Thus, the sum over p in (3.10) simplifi es to 
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As an interesting aside, we can equate (3.17) with (3.11), 
thereby obtaining 
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           (3.19)

Moreover, we can verify this result in Mathematica [3] by 
creating the following instructions: 

P[i_,l_,q_] := Gamma[i - l + 1] Gamma[i + q + 1]/(Gamma[i 

+ q - l] Gamma[i]), 

and 

P2[i_ ,l_,q_] := (i + q -l) i Hypergeometric PFQ[{-q, -l, -q 

- i}, {l - q - i, -i}, -1] - q l Hypergeometric PFQ[{1 - q, 1 - l, 

-i - q}, {1 + l - q - i, 1 - i}, -1].

If we let i = 12, q = 7 and l = 8, then we obtain the following 
results: 

In[3]:= P[12, 7, 8] 

Out[3]= 167960/11, 

and 

In[8]:= P2[12, 7, 8]

Out[8]= 167960/11.

Therefore, we observe that both sides of (3.19) agree with 
each other. As a consequence, it should be noted that even when 
the hypergeometric function approach is not able to produce an 
elegant solution to a combinatorial identity, it can provide new 
results for hypergeometric functions in conjunction with the 
Wilf-Zeilberger approach.

Conclusion

In this note, two powerful metho ds have been presented for 
solving combinatorial identities. 

In the fi rst approach the combinatorial identity is expressed 
in terms of a hypergeometric function, not necessarily a 
Gaussian hypergeometric function, and then adapted into 
a form where it can be determined from existing tables of 
hypergeometric functions such as those in [6] or in the 
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Mathematica software package. The second approach has been 
the application of Koepf's version [8] of the Wilf-Zeilberger 
algorithm [7], which is an existing suite of routines in Maple. 
Both methods have their strengths and weaknesses as described 
herein. Nevertheless, we have used both methods to solve some 
tricky combinatorial identities.
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