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Abstract

Pointing out that Λ-fractional analysis is the unique fractional calculus theory including mathematically acceptable fractional derivatives, variational calculus for 
Λ-fractional analysis is established. Since Λ-fractional analysis is a non-local procedure, global extremals are only accepted. That means the extremals should satisfy 
not only the Euler–Lagrange equation but also the additional Weierstrass-Erdmann corner conditions. Hence non-local stability criteria are introduced. The proposed 
variational procedure is applied to any branch of physics, mechanics, biomechanics, etc. The present analysis is applied to the Λ-fractional refraction of light. 
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Introduction

Fractional calculus has recently been applied to modern 
engineering advances, mechanics, physics, biology, 
bioengineering, etc, introducing non-local derivatives. Leibniz 
[1] originated fractional calculus, with Liouville [2], Riemann [3], 
and other famous mathematicians. Samko, et al. [4], Poldubny 
[5]. Oldham, et al. [6], and Miller, et al. [7] are typical sources 
informing about fractional calculus. Fractional derivative 
models have been introduced, to describe the deformation of 
various models in mechanics. Bagley, et al. [8,9], Atanackovic 
[10], Mainardi [11]. introduced fractional viscoelastic models, 
trying to simulate their experiments. Various studies in 
fractional differential equations are presented in [12-15]. 
Lazopoulos [13] turning the interest from time to space, just 
to discuss non-homogeneous materials with possible voids, 
etc, proposed a model with fractional space derivatives and 
has presented a series of papers establishing the fractional 
deformation of the materials. has presented wave propagation 
in viscoelastic materials with fractional calculus. Noll's axiom 
of local action, Truesdell [14] is not valid anymore. Hence, the 
stress at a point does not depend only upon the (local) strain at 

that point, but on the strain of a region around the point. That 
postulate has been introduced by Eringen [15], indicating that 
in micro and nano materials the stress at a point depends on 
the deformation of a region around that point contrary, to the 
conventional elasticity based upon Noll’s axiom. 

It is evident that fractional derivatives not only abolish 
the local character of the conventional derivatives but also fail 
to be derivatives satisfying the prerequisites of Differential 
Topology, Chillingworth [16], which are: a. Linearity, b. 
Leibniz rule c. Chain rule. Lazopoulos [17] trying to fi ll that 
gap proposed the -fractional analysis with the -fractional 
derivative satisfying all the necessary postulates of differential 
topology for real mathematical derivatives. -fractional 
analysis has been applied to mechanics, differential equations, 
geometry, physics, etc. Lazopoulos [18-25]. However, 
although -fractional analysis responds to the need for global 
considerations of a problem, what has been overlooked is 
the global stability analysis of those problems. Indeed, the 
considered variational procedures are local, whereas all the 
other factors of the problems are global. Therefore, globally 
stable solutions are considered with discontinuities introduced 
by Weierstrass-Erdman corner conditions. 
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The fractional calculus

The fractional integrals are defi ned by, 
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For a fractional dimension 0 <  ≤ 1. Eq.(1) defi nes the left 
and Eq.(2) the right fractional integral, whereas  is the order of 
fractional integrals and () Euler’s Gamma function. Although 
many fractional derivatives exist, Riemann-Liouville fractional 
derivative (R-L) will be considered, defi ned by:
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That is the left R-L derivative, whereas the right Riemann-
Liouville’s fractional derivative (R-L) is defi ned by:
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The fractional integrals and derivatives are related by the 
expression, 

( ( )) ( )RL D I f x f xa x a a
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Since fractional calculus, based upon fractional derivatives, 
are not suffi cient to generate differentials, Lazopoulos [17] 
proposed -Fractional analysis, just to bridge the inability 
of fractional derivatives to generate differentials. The 
-fractional analysis proposes a dual space, the -fractional 
space, where everything behaves conventionally. Therefore the 
derivatives in the proposed Λ-space are local and differentials 
may be generated. Further differential geometry is established 
with variational procedures and fi eld theorems. In addition, 
-fractional analysis can generate theorems corresponding 
to the existence and uniqueness of the fractional differential 
equations. The -fractional derivative (-FD) is defi ned by:
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Recalling, Eq. (3), the -FD is defi ned by, 
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The dual -fractional space to the initial space is defi ned by 
(X, F(X)) coordinates, with,

1 1,  ( ) ( ( ))X I x F X I f x Xa x a x
                 (8) 

Thus, the -FD is a local derivative, in the dual -fractional 

space (X, F(X)). Hence, the conventional mathematical analysis 
applied in that space acquires the demanded accuracy. 
Consequently, differential geometry exists in that dual space. 
Further, no question arises concerning the accuracy of various 
other important mathematical tools used in applications like 
variational procedures and fi eld theorems, existence and 
uniqueness theorems of differential equations. Further, the 
various results may be transferred into the initial space, that is 
the dual to the dual of the initial space, following the relation,

(1 ) )1 1( ) ( ( ))  ( )RL RLf x D X x D I f xa x xFx a
  


                       (9)

Implementation of Λ-fractional analysis

For a better understanding of the proposed -fractional 
analysis, the fractional tangent space of the curve 

f(x)=x5               (10) 

is presented. In fact there exist two spaces, the initial space (x, 

f(x)) and the -fractional space (X, F(X)). According to Eq. (8)
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The fractional -space is formulated if x is substituted 
through Eq.(8a). Indeed, 
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The initial space concerning the curve of Eq. (10) is shown 
in Figure (1). 

Further, the confi guration of that curve in the -fractional 
space is shown in Figure (2).

Further, the -fractional derivative is defi ned by,

Figure 1: The function f(x)=x5.
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It is again pointed out that the -fractional derivatives are 
local (common) in the -fractional space. Hence, the -FD in 
the fractional -space behaves according to the conventional 
derivative. Just to illustrate the point, the tangent space in the 
fractional -space is shown in Figure 3 at the point X = 0.7.

The tangent space of the curve F(X) in the -space at the 
point X = 0.7 is defi ned by the equation:

( ) 3.860( ) ( ) ( ) (1.15 ) 0.70 0
dF X

G X F X X X X X
dX

    

2.86(4.44 ) ( 07)  0.7X XX                (14)

Taking into consideration the correspondence between 

x and X, Eq. (8), the point X0 = 0.7 for  = 0.6 corresponds to 
the point x0 = 0.9. Transferring the tangent line into the initial 
space, the corresponding tangent curve is defi ned by (Figure 
4),

3.6( ) ( ) 4.28 ( 0.7)0g x f x x X                (15)

With X defi ned by xIX xa
 1

. 

It should be taken into consideration that no geometry may 
be transferred into the initial space. Only functions from the 
-space may be transferred into the initial one.

The Λ-fractional Euler-Lagrange equation

Transferring the problem from the initial space (x, y(x)) to 
the (dual) -fractional space the corresponding parameters of 
the problem (X, Y(X), Y  (X)) are defi ned through,

21
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and
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The extermination of the functional in the - fractional 
space is expressed by,

( , ( ), ( )0= ) L F X Y X Y X dXV               (18) 

with some corresponding boundary conditions. 

The extremal equation is defi ned by, 
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With the boundary conditions. In conventional equilibrium 
problems one has to solve the above extremal problem, just to 
complete the solution. That happens because the local criterion 
of stability is adopted, with continuous derivatives. However, 
in the present -fractional analysis global criteria should only 
be considered, since everything concerning fractional calculus 
is global. In fact solutions of the extremal Eq. (19) are adopted 
with n on-continuous derivatives. In fact, the Weierstrass-
Erdman corner conditions, [26], should additionally be 
satisfi ed with,

   0 0  0F X c F X cY Y                      (20)

      Y F 0 0 0F X c F Y F X cY Y         
        (21) 

That is imposed for every variational problem in fractional 
calculus since only global minimization is considered. Further, 
the results should be transferred into the initial space. In that 
space, only functions may be transferred, not derivatives, 
since fractional derivatives do not exist in the initial space but 
only functions. In fact, the function Y(X) defi ned as extremal 
of the variational problem in the -fractional space should be 

Figure 2: The Λ-fractional space with γ = 0.6.

Figure 3: The confi guration of the curve f(x) = x5 in the fractional Λ-space with its 
tangent space at Χ = 0.7.

Figure 4: The initial curve with the transferred tangent curve g(x) from the Λ-space.
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transferred into the initial space with the help of the Eqs. (8). 
Indeed,

2
( ) 3

xY X Y
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            (22)

Further, transferring into the initial space should be 
effected using Eq. (9).
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The Λ-fractional refraction of light

The constant velocity of light in a medium I is 1 and in 
medium II is 2 Medium I is separated from medium II by the 
line y = 0. Derive the law of refraction of a light ray going from 
point a = (x1, y1) in a medium I, to point b = (x2, y2) in medium 
II if we know that the light ray transverses this path in the 
shortest time interval. 

The points a and b in the initial space, correspond to the 
points A = (X1, Y1) and B = (X2, Y2) in the -fractional space, 
Figure 5.

If  is the fractional order corresponding to various material 
non-homogeneous distributions, the -fractional space is 
defi ned by,

   
2 2

,   
3 3

x y
X Y

 
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              (24)

corresponding to the (x, y) points of the initial space. 

The light -fractional light refraction problem is formulated 
in the -fractional space and reduces to minimization of the 
integral, 

2 21 1
  

1 1 0 2

2XY YXoJ dX dXX Xv v

   
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The minimization of the integral is effected with the 
consideration simultaneously of both the Euler-Lagrange 
equation and the corner conditions. 

The solution is defi ned through the angles  and  with the 

relation see [26], p. 159, where, v1 and v2 are the light velocities 
in a medium I and medium II respectively. It is proven that the 
minimum time for the light traveling from point A to point B is 
defi ned for the zigzag straight line AX0B,

sin 1 =  = consant
sin 2

v

v




 (26)

That relation defi nes the point X0 where the light beam 
meets the axis X. Transferring the light path into the initial 
space, the point X0 in the -fractional space is transferred to 
the point x0 of the initial space with, see

1/(2 )( (3 ))x Xo o
 

             (27)

Since straight lines in the -fractional space are transferred 
as straight lines in the initial space and the path should pass 
through the points a, xo, and b in the initial space, the fractional 

refraction problem is defi ned by the zigzag curve axob. It is 

evident that the relative slope of the line axo and the xob are not 
the same as in the -fractional space.

Conclusion

-fractional variational problems should be considered 
in the context of global minimization, satisfying not only 
the well-known Euler –Lagrange variational equation but 
also the additional Weierstrass-Erdmann conditions. The 
latter conditions yield global minimization. Applications 
of the proposed theory have already been presented [27], in 
discussing fractional mechanics, with the derivation of the 
governing -fractional equations. Nevertheless, the remark 
of the globalism of the fractional variational procedures 
infl uences not only physics applications but also mathematical 
problems like differential equations and fractional differential 
geometry, (fractional geodesics).
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