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Abstract

The phenomenology of overdoped high Tc uperconductors can be described by a one band d wave Eliashberg theory where the mechanism of superconducting 
coupling is mediated by antiferromagnetic spin fl uctuations and whose characteristic energy Ω0 scales with Tc according to the empirical law Ω0 = 5.8 kBTc. This model 
presents universal characteristics that are independent of the critical temperature such as the link between the s and d components of electron boson coupling constants 
and the invariance of the ratio 2∆/kBTc. This situation arises from the particular structure of Eliashberg's equations which, despite being non-linear equations, present 
solutions with these simple properties. 
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Introduction

Eliashberg's theory [1] was born as a generalization of the 
BCS theory to explain some anomalies in the experimental 
data concerning lead. Subsequently, it was seen that the theory 
can be successfully applied to explain the experimental data 
of practically almost all superconducting materials [2,3], fi rst 
of all low Tc phononic superconductors [4], then magnesium 
diboride [5,6], graphite intercalated compound CaC6 [7], iron-
based superconductors [8-12]. This theory can be applied to 
describe particular systems such as proximized systems [13] 
and fi eld effect junctions [14-16]. For what concerns the high 
Tc superconductors [17-21], their properties strongly depend on 
their oxygen content. It is possible to identify three different 
regimes: under, optimal and overdoping. While the discussion 
is still open as regards the underdoping regime, it is almost 
certain that the fundamental mechanism in the optimal and 
over regime is due to antiferromagnetic spin fl uctuations, 

and especially in the over regime, the experimental data can 
be described satisfactorily by one band d - wave Eliashbeg's 
theory [22,23]. Detailed studies are present in the literature 
on cuprates and precisely on tunneling spectra that can be 
reproduced by using the framework of d - wave Eliashbeg's 
theory [24-26]. In this paper, we provide an extensive 
investigation of the consequences of a different symmetry 
of coupling in the two components of self-energy: the 
renormalization function Z(in) (s-wave symmetry) and the 
gap function ∆(in) (d-wave symmetry) and if some link exists 
between them. We focus here on physical quantities which can 
be evaluated in the imaginary axis formalism. Furthermore, 
it has been experimentally determined that, in cuprates, a 
link [27] exists between magnetic resonance energy Ω0 and 
critical temperature. So we will study the properties of one 
band d-wave Eliashbeg's theory where a fundamental role will 
be played by the assumption that the representative energy 
Ω0 of these systems is related to the critical temperature by 
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a universal relationship [27] Ω0 = 5.8 kBTc. This assumption 
represents a very strong constraint in correlating the values of 
the two-electron boson coupling constants d and s. For each 
value, s we will look for the value d which exactly reproduces 
the Tc superconductor and we will study which relation exists 
between the d and s components of the electron boson coupling 
constant. Finally, we will see that this model has the particular 
property that the relationship between the gap and the critical 

temperature (
2 d
k TcB


) is independent of the particular value of 

the critical temperature. 

Mo del

The one-band d-wave Eliashberg equations [23,30-35] are 
two coupled equations: one for the gap ∆(in,) and one for 
the renormalization functions Z(in,). These equations, in the 
imaginary axis representation (here n denote the Matsubara 
frequencies), when the Migdal theorem holds [29], are:

2( , ) = ( , , , ) ( , )0 2
dZ T Nn n n n m mZm
          

        (1)

2 *( , ) ( , ) = [ ( , , , ) ( , )]0 2
dZ Tn n n mm
           

     

( | |) ( , )Nc m m                    (2)

where ( )c m    is the Heaviside function, c is cut-off 
energy and 

2 2 2( , , , ) = 2 ( , , ) / [( ) ]0 d Fn m n m                 (3)

 ( , ) =
2 2( , )

mN mZ
m m

 
  

             (4)

 
( , )( , ) =

2 2( , )
mN m

m m

  
  





 (5)

We assume [2,23,30-35] that the electron boson spectral 
function 2( ) ( , , )F     and the Coulomb pseudopotential 
*( , )    at the lowest order contain separated s and d -wave 

contributions, 

2 2 2( , , ) = ( ) ( ) 2 (2 ) 2 (2 )F F F cos coss s d d              (6)

* * *( , ) = 2 (2 ) 2 (2 )cos coss d                    (7)

as well as the self-energy functions: 

( , ) = ( ) ( ) (2 )Z Z Z cosn s n nd                 (8)

( , ) = ( ) ( ) (2 )cosn s n nd                   (9)

We put the factor 2  inside the defi nition ∆d(n) because, 

experimentally, the peak of the density of the state is, usually, 
identifi ed ∆d(n=0) while, as we will see, Zd(n) is always zero. 

The spectral functions 2Fs,d(Ω) are normalized in the way 

that 
2 ( ),2 =10
Fs d d

   
 and of course, in this model the 

renormalization function is pure s -wave (Z(n,) = Zs((n)) 

while the gap function is pure d-wave ( ( , )= ( ) (2 )n d n cos     ). 

We consider just solutions of the Eliashberg equations in pure 

d -waveform because this is the indication of the experimental 
data. This means that the s  component of the gap function is zero 
and this situation happens because, usually [36], * *>>s d  ). In 
the more general case, in principle, the gap function has d and 
s components. The renormalization function ( , ) = ( )Z Zs    
has just the s component because the equation  Zd (n) is a 
homogeneous integral equation with just the solution Zd (n) = 
0 [37]. For simplicity, we also assume that 2 2( ) = ( )F Fs d    
the spectral functions are the difference between two Lorentzian, 
i.e. 2 ( ) = [ ( , ) ( , )]0 0,F C L Ls d        where 

2 2 1( , )) = [( ) ( ) ]0 0L      , C is the normalization 

constant necessary to obtain 

2 ( ),2 =10
Fs d d

   
,  0 and  are 

the peak energy and half-width, respectively. The half-width is   
=Ω0/2. This choice of the shape of the spectral function and the 

fact that 2 2( ) = ( )F Fs d   , is a good approximation of the 

true spectral function [38] connected with antiferromagnetic 
spin fl uctuations. The same thing also happens in the case of 
iron pnictides [39]. In any case, even making different choices 
for  the link between d and s) remains the same but changes 
(very little) the coeffi cients of the linear fi t. The cut-off energy 
is = 1000c  meV and the maximum quasiparticle energy is max 
= 1100 meV. In the fi rst approximation, we put * =0d  (if the s  
component of the gap is zero the value of *

s  is irrelevant). 
Now we fi x the critical temperature and for any value, s we 
seek the value d that exactly reproduces the initial fi xed critical 
temperature. After, via Padè approximants [40], we calculate 
the low-temperature value (T = Tc/10 K) of the gap because, 
in presence of a strong coupling interaction, the value ∆d(n=0) 
obtained by solving the imaginary-axis Eliashberg equations 
can be very different from the value ∆d obtained from the real-
axis Eliashberg equations [31]. 

Results and discussions

We fi x  three different critical temperatures ( 70  K, 90  K 
and 110  K) and for any particular critical temperature, we 
choose different values s and determine which value d exactly 
reproduces the chosen critical temperature by numerical 
solution of Eliashberg equations. In Figure 1 we can see that 

Figure 1: (Color online)  λd versus λs for three different critical temperatures:  Tc= 70 
K (green point line), Tc= 90 K (red dash line) and Tc= 110 K (black solid line). In the 
inset the linear fi t (solid line) of the Tc= 70 K (open dark blue circles) case is shown.
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the three curves d versus s are coincident. The inset of Figure 
1 it is shown the linear fi t of these results. We obtain a linear 
link between d and s

= 0.616 0.732sd                   (10)

These results are general and do not depend on the 
particular shape of the electron-boson spectral function. If 
we change the shape of the electron-boson spectral function 

and we choose, for example, 2 ( ) = 0.5 ( )0 0,Fs d     we 

fi nd that the linear link between d and s changes very little 
and becomes =0.575 0.655d s   . Even the introduction of a 
Coulomb potential different from zero, as we have verifi ed, 
does not involve a substantial modifi cation of our results. In 
principle, it is possible to obtain this result (the linear link 
between s and d) in a more simple but less general way. In 
fact, a similar conclusion relative to the linear connection 
between s and d may also be derived from the analysis of 
the approximate MacMillan formula for cT  [41] generalized to 
d-wave case [42]: 

1= ( )0 2
sk T expcB
d





                (11)

The problem is that the MacMillan equation works just in a 
weak coupling regime. Now we solve, for each couple of d and 
s values, the Eliashberg equations at T = Tc/10 and after, via 
Pade we calculate the value of superconductive gap (the energy 

of the density of states peak). In Figure 2 the rates 
2 d
k TcB


 are 

shown for three systems with different critical temperatures 

( 70  K, 90  K and 110  K). The curves are exactly coincidental. 

We have also studied what happens when the ratio 0
k TcB


 is 

equal to two as in the case of the heavy fermion [43] 2 3UPd Al  
with Tc = 2 K which could represent an extreme situation. In this 
case, the link remains linear and becomes =0.880 0.966d s    
as it is possible to see in the inset of Figure 2. Finally, in the 

case of extremely strong coupling ( 0 <<1
k TcB


) it is possible to 

demonstrate in an analytical way, following the calculus of ref 

26, when >1
2
s
d




, that d ≈ s i.e. the link remains linear. 

Conclusion

In this article, it has been shown th at one band d -wave 
Eliashbeg's theory presents universal aspects as the linear link 
between d and s or the values 2 /d B ck T  that are independent 
of the particular critical temperature. These universal 
aspects are related to the assumption that the typical bosonic 
energy is correlated to the critical temperature as shown by 
experimental data (Ω0= 5.8 kBTc). We here proved that in a fully 
numerical solution of the Eliashberg equation, such linear links 
hold with great accuracy. A generalization and development 
of our results can be obtained by explicitly considering the 
momentum dependence of the self-energy without average on 
the Fermi surface as was done by Kamila A. Szewczyk, et al. 
[44]. Obviously, we would include in the calculations, unlike 
them, as we have done now, the link, observed experimentally, 
between the critical temperature and the representative energy 
of the bosonic spectrum. 
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