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Abstract

In this paper we perform a detailed analysis of Riemann's hypothesis, dealing with the zeros of the analytically-extended zeta function. We use the functional equation 
1( ) = 2 sin( / 2) (1 ) (1 )s ss s s s        for complex numbers s such that 0<Re(s)<1, and the reduction to the absurd method, where we use an analytical study based 

on a complex function and its modulus as a real function of two real variables, in combination with a deep numerical analysis, to show that the real part of the non-trivial 
zeros of the Riemann zeta function is equal to ½, to the best of our resources. This is done in two steps. First, we show what would happen if we assumed that the real 
part of s has a value between 0 and 1 but different from 1/2, arriving at a possible contradiction for the zeros. Second, assuming that there is no real value y such that 
ζ(1/2+yi)=0, by applying the rules of logic to negate a quantifi er and the corresponding Morgan's law we also arrive at a plausible contradiction. Finally, we analyze what 
conditions should be satisfi ed by y ∈R such that ζ(1/2+yi)=0. While these results are valid to the best of our numerical calculations, we do not observe and foresee any 
tendency for a change. Our fi ndings open the way towards assessing the validity of Riemman's hypothesis from a fresh and new mathematical perspective.
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Introduction

Riemann's hypothesis, fi rst formulated by Bernhard 
Riemann in 1859 [1], is a conjecture about the distribution 
of the zeros of the Riemann zeta function ζ(s) [2]. Due to its 
relationship with the distribution of prime numbers in the set 
of natural numbers, proving this hypothesis is one of the most 
important open problems in contemporary mathematics [3,4].

In this paper, we analyze Riemman's hypothesis by dealing 
with the zeros of the analytically-extended zeta function. 
To be specifi c, we make use of the functional equation 

1( )=2 sin( /2) (1 ) (1 )s ss s s s        for complex numbers s such 
that 0<Re(s)<1. Our goal is to assess if it can really be true 
that the only non-trivial zeros of the Riemann zeta function 
are those complex numbers whose real part is equal to 1/2. 
We pursue this analysis using a combination of analytical and 
numerical techniques, as discussed in detail below.

 Previous research

Riemann's hypothesis is also the central subject of a lot 
of recent research. For instance, establishing an analogue to 
Lagaria's criterion for the hypothesis in terms of harmonic 
series [5]. Describing the connection between the zeta function 
and the solution of the Majorana fermionic equation in curved 
space-times [6]. Studies on the validity of the hypothesis via 
statistical analysis of the Mertens function [7]. In addition, 
making use of Riemann's hypothesis to obtain asymptotic 
formulas for the second moment of the nth antiderivative of the 
argument of the zeta function [8]. Studies of ergodic theorems 
to provide new characterisations of the hypothesis [9]. It was 
observed that the zeta function corresponds to the spectrum 
of a certain quantum Hamiltonian capturing the near-horizon 
dynamics of the Schwarzschild black hole [10]. Works that 
describe an algorithm to compute very high Riemann zeros 
using random walks [11]. Another work provides a Riesz-type 
criterion for the generalized Riemann hypothesis [12]. It was 
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considered an analogue of the hypothesis and quantum walks 
[13]. A Riesz-type criterion for the hypothesis in terms of 
one variable was also provided in [14]. Deformations of the 
Keiper-Li sequence were considered to analyze the hypothesis 
[15]. A positivity conjecture was proposed for matrices related 
directly to the hypothesis [16]. Studies on the meromorphic 
extensions of fractal zeta function from quasiperiodic sets [17]. 
Also regarding meromorphic functions, [18] it was considered 
the meromorphic modular forms of a family of generalized 
L-functions and relates them to the zeta function.

Additionally, other important research works were 
published recently that have a connection to our work. An 
example is the new results by Conrey [19], who analyzes that the 
major diffi culty when trying to prove the hypothesis through 
analysis comes from the fact that the zeros of L-functions have 
a very different behavior to the zeros of many of the special 
mathematical functions, and only recently it was found that the 
modularity of the L-functions is associated to elliptic curves, 
which could help in this direction. Moreover, recent work by 
Liu [20] attempts to prove the Riemann hypothesis for both 
the Riemann zeta-function ζ(s) and the Dirichlet L-function 
L(s,x) through an equivalent condition on the Farey series set 
forth by Franel and Landau. Finally, Liu and Wang analyzed 
recently [21] the Riemann problem of the high-order Jaulent-
Miodek (JM) equation with initial data of step discontinuity, 
as explored by Whitham modulation theory, and found that 
the periodic wave solutions of the high-order JM equation 
are described by the elliptic function along with the Whitham 
modulation equations.

The hypothesis has also been the subject of intensive 
research works in the past in several ambits, see for instance 
[22-31] and references therein.

 Daily-life applications

Even if belonging to the fi eld of pure mathematics, this 
hypothesis also has applications in our daily life. We have 
already mentioned some of them above when enumerating 
references to previous important and recent research works. To 
put everything in context, let us discuss briefl y some of these 
applications here. The hypothesis also fi nds a wide spectrum 
of applications in science and technology. For instance, the 
zeros of the zeta function have important connections to the 
energy spectrum of classical chaotic systems [32], quantum 
Hamiltonians [33], as well as to scattering amplitudes in 
quantum fi eld theory [34]. Quantum physics is currently 
around us, and future computers, not so far in time, will 
process information directly at a quantum level. The 
hypothesis has therefore a direct impact on the upcoming 
quantum technologies and their industrial implications [35]. 
In addition, there are also important implications in the fi eld of 
cryptography. The zeros of the zeta function can be interpreted 
as harmonic frequencies in the distribution of primes, 
leading to studies of the distribution of distances between 
consecutive primes [36]. Such analysis is key in the security 
of asymmetric-key cryptosystems such as RSA, which is based 
on the fact that fi nding the prime factorization of a natural 
number is a hard computational problem [37], though not for 

quantum computers [38]. Though RSA is no longer used as a 
standard cryptographic protocol (in favor of symmetric-key 
schemes), it has been a technical standard for many years and 
still, as of today, is used in certain non-critical applications. 
There are many other daily-life applications of the hypothesis. 
Apart from encryption algorithms, which rely heavily on the 
properties of prime number distributions, zeros of the zeta 
function are also related to particle distributions in quantum 
statistical mechanics, as well as to the eigenvalues of random 
matrices [39]. As such, random matrices have by themselves 
a very wide spectrum of practical applications, including the 
energies of heavy uranium-like nuclei, the behaviour and 
dynamics of fi nancial markets, and even the development of 
new machine learning and Artifi cial Intelligence (AI) algorithms 
based on neural networks and deep learning. And this last 
point is intriguing since new techniques are required to boost 
performance and decrease the energy consumption of current 
AI models, such as Large Language Models [40]. In this overall 
context, the hypothesis also impacts the currently advanced 
software used for cybersecurity and artifi cial intelligence, such 
as the EC3 Software [41].

 About this paper

As said above, here we analyze Riemman's hy-
pothesis by dealing with the zeros of the analytical-
ly-extended zeta function using the functional equation 

1( )=2 sin( /2) (1 ) (1 )s ss s s s        for complex numbers s such 
that 0<Re(s)<1. The objective of this analysis is to show if it can 
really be true that the only non-trivial zeros of the Riemann 
zeta function, using its functional equation, are those complex 
numbers whose real part is equal to 1/2. More specifi cally, we 
want to show that if x is a real number such that 0<x<1, then 
it can be satisfi ed that there exists yR such that ζ(x+iy) = 0 if 
and only if x = 1/2. In order to develop our analysis, we will use 
a combination of two mathematical methods. The fi rst method 
is an analytical technique called reduction to the absurd, and the 
second one is based on numerical analysis techniques using two 
different types of specialized mathematical software: Matlab 
and Wolfram Alpha. The reduction to the absurd method is a 
very usual and well-known technique, when we want to prove 
that a conditional statement such as ``If A happens, then B 
happens" is true. As we shall see, in this paper, we make use 
that, if the statement ``If A happens, then B happens" is true, 
then by using the fundamental laws of mathematical logic, the 
negated statement must also be true. That is, ``If B does not 
happen, then A does not happen" must also be true. In this 
way, here we will usually that ``A happens" but ``B does not 
happen". In this way if we are able to show that ``A does not 
happen", then we arrive at what we call a contradiction because 
we were assuming that ̀ `A happens". And, therefore, the state-
ment ``If B does not happen, then A does not happen" is true, 
and ``If A happens, then B happens" is also true. Additionally, 
the numerical analysis method is based on algorithms devel-
oped using Matlab and Wolfram Alpha. Note that, like all tech-
niques based on numerical analysis, in our algorithms, some 
of the calculations will be iterated until a suffi ciently small er-
ror is attained, which we take as convergence criteria. In our 
numerical approach, both Matlab and Wolfram Alpha work 
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up to a preset error given by machine precision. Therefore, of 
course, the numerical analysis methods work under certain as-
sumptions, like not exceeding a certain accepted (minimum 
and small enough) error, as well as other limitations coming 
from potential sources of error such as fl oating point errors. As 
for specifi c algorithms, in Matlab, we will use the ``gradient-
free Nelder-Mead algorithm" to minimize two functions to the 
best of our numerical capabilities. And Wolfram Alpha is used 
to solve a non-linear system of equations. See Appendix A for 
more detailed information on our numerical methods. Diving 
into more details of our actual derivations, as a fi rst step, we 
show two Propositions that we use later to work analytically 
throughout the whole paper.

Using the reduction to the absurd method, we develop an 
analytical study based on a complex function, and its modulus 
as a real function of two real variables. And at a certain point in 
our study, we combine it with intensive numerical analysis at 
some steps. Our derivations are compatible with the real part of 
the non-trivial zeros of the Riemann zeta function being equal 
to 1/2, to the best of our resources.

We do this in two steps. First, we show what would happen 
if we assume that the real part of s has a value between 0 and 
1 but different from 1/2, arriving at a possible contradiction for 
the zeros. Second, assuming that there is no real value y such 
that ζ(1/2+yi)=0, and by applying the rules of logic to negate a 
quantifi er together with the corresponding Morgan's law, we 
also arrive at a plausible contradiction.

Finally, we also analyze what conditions should be satisfi ed 
by yR such that ζ(1/2+yi)=0. While most of our results are fully 
analytic, at some specifi c parts of the analysis we need to rely 
on heavy numerical calculations. Some part of our analysis is 
therefore dependent on them. However, we do not observe nor 
foresee any tendency for a change in our calculations, which 
leads us to conjecture that the validity of our conclusions 
is general. Our approach also opens the way toward a new 
mathematical angle to assess Riemman's hypothesis.

The paper is organized as follows. In Sec.2 we review the 
basics of the hypothesis. In Sec.3 we implement our analysis, 
as briefl y outlined above. In Sec.4 we provide analytical 
constraints to be satisfi ed by the zeros that come out naturally 
from our analysis. Finally, in Sec.5 we wrap up our conclusions 
and perspectives for future work. In addition, in Appendix A 
we provide the Matlab computer codes used and give a brief 
explanation of the numerical techniques used both with Matlab 
and with Wolfram Alpha.

Zeta  function and Riemman's hypothesis

The Riemann zeta function ζ(s) is defi ned in complex 
numbers as the sum of an infi nite series as follows: 

=1

1( )= .
s

n

s
n




                  (1)

The series is convergent when Re(s) is strictly greater 
than 1. Leonhard Euler showed that this series is equivalent to 
Euler's product, 

p

1( )= ,
1 s

p rime

s
p


                (2)

Where the infi nite product extends over the set of all prime 
numbers p and again converges for a complex s whose real part 
is greater than 1. The convergence of the Euler product shows 
that ζ(s) has no zeros in this region since none of the factors in 
the product have zeros.

Riemann's hypothesis deals with the zeros outside the 
convergence radius of the series in Eq.(1) and/or the Euler 
product in Eq.(2). To preserve the meaning of this hypothesis, 
one needs to analytically continue the zeta function ζ(s), so that 
it makes sense for any value of s. Any choice of extension will 
lead to the same conclusions as above since the zeta function 
is meromorphic. Hence, in particular, for complex numbers s 
such that 0<Re(s)<1, the function ζ(s) can be expressed by the 
functional equation 

1( )=2 sin (1 ) (1 ),
2

s s ss s s    
   

 
              (3)

Where Г(s) is the Gamma function, defi ned by 

1

0
( )= .s ts t e dt

                  (4)

In this work, we will make extensive use of this functional 
form.

From now on, we consider the zeros of the above analytical 
extension of the zeta function. Some of these zeros are called 
"trivial" since they can be easily seen by inspection. In 
particular, from Eq.(3) one can see that s =-2,-4,-6,…, i.e., all 
negative even integers, are trivial zeros since they cancel the 
trigonometric function. Likewise, there are other (complex) 
values of s such that 0<Re(s)<1 and for which the zeta function 
also vanishes, which are called "non-trivial" zeros. The 
Riemann conjecture refers specifi cally to these non-trivial 
zeros, stating the following: 

The real part of all non-trivial zeros of the Riemann zeta function 
is equal to 1/2. 

The conjecture, therefore, implies that all the non-trivial 
zeros should lie on the critical line s= ½+it, where t is a real 
number and i is the imaginary unit.

Analysis  of the hypothesis

Let us start our analysis with the following two propo-
sitions

 Proposition 1: Using Riemann's zeta functional equation, it is 
satisfi ed that, ⱯsC such that 0<Re(s)<1 and ζ(s) = 0, then ζ(1-s) = 
0.

Proof: Given Riemann's zeta functional equation in Eq.(3), 
then ζ(1-s) is equal to 

1 (1 )(1 )=2 sin ( ). ( ).
2

s s ss s s     
  

 
           (5)

Therefore, if there exists an sC such that 0<Re(s)<1 and       
 ζ(s)=0, then by the previous equation we have that 
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1 (1 )(1 )=2 sin ( ) 0=0,
2

s s ss s    
   

 
             (6)

which proves the proposition. 

Proposition 2: It is satisfi ed that ( )= ( )a bi a bi   .

Proof: Using the defi nition of ζ(a+bi), we have that 

=1

1( )= .
a bi

n

a bi
n





                   (7)
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ln( )

=1 =1

( )= = ,
bibi n

a a
n n

n ea bi
n n


 

  

ln( )
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=1 =1
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If we do the same but for ζ(a-bi), we have that 
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=1 =1
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Therefore, comparing the above equations, we see that 

( )= ( )a bi a bi   , as we want to prove.

We now dive into the actual details of Riemann's conjecture. 
As a reminder, this reads as follows:

Riemann hypothesis: Let x be a real number such that 0<x<1. 
Then, it is satisfi ed that ƎyR such that ζ(x+yi)=0, if and only if x=1/2.

Our approach to the conjecture is as follows. Let x be a real 
number such that 0<x<1. We assess the validity of the double 
implication and start with the fi rst direction.

i. If y   such that ( )=0x yi   then =1 /2x . 

Our strategy is to use the reduction to the absurd method 
to validate it. With this in mind, let us then assume that 
there exists s = a+biC such that a ≠ 1/2, 0<a<1 and such that 
ζ(a+bi)=0.

If the above were true, then using Proposition 1 it would 
also be satisfi ed that ζ(1-(a+bi))=0. Therefore, since the 
function ζ(s) is continuous sC such that Re(s)(0,1), 
then if a is, for example, less than 1-a, then this implies 

that | ( )|=| (1 ( ))|=0a bi a bi    , and then also that 

2 2| ( )| =| (1 ( ))| =0a bi a bi    . Then, 2| ( )|x yi  , as a real 

function of real variables x and y, should have a maximum or 

a minimum for some x+yiC, where 0<a<x<1-a<1 (assuming, 

without loss of generality, that a<1-a). Let us now analyze if 
this is possible. First, notice that 

2| ( )| = ( ) ( )= ( ) ( ),x yi x yi x yi x yi x yi                   (10)

Where in the last step we used Proposition 2. Next, we 
calculate the following fi rst-order partial derivative with 
respect to x: 

     2| ( )| = ( ) ( ) = ( ) ( ) ( ) ( ) ,x x x xx yi x yi x yi x yi x yi x yi x yi                 

= ( ) ( ) ( ) ( )=0.x yi x yi x yi x yi                      (11)

This equation implies that 

    
 
         

 
( ) ( )( ) ( ) = ( ) ( ) = .
( ) ( )

x yi x yix yi x yi x yi x yi
x yi x yi  

                  (12)

Integrating the above expression we fi nd 

        



      


1 1ln ( ) = ln ( ) ( ) = ( ) ( ) = 1.

( )
x yi x yi x yi x yi x yi

x yi
 

                (13)

We can now do the same but using the fi rst-order partial 
derivative with respect to y: 

     2| ( )| = ( ) ( ) = ( ) ( ) ( ) ( ) ,y y y yx yi x yi x yi x yi x yi x yi x yi                 

= ( ) ( ) ( ) ( )=0.i x yi x yi i x yi x yi                         (14)

This equation implies that 

    
 
       

 
( ) ( )( ) ( ) = ( ) ( ) = .
( ) ( )

x yi x yix yi x yi x yi x yi
x yi x yi  

               (15)

Integrating the above expression we fi nd 

          ln ( ) = ln ( ) ( ) = ( ).x yi x yi x yi x yi          (16)

Hence, using Eq.13 in combination with Eq.16 we have: 

 2( ) =1.x yi               (17)

Therefore, the question is now then rephrased as if there 
exists an x+yiC with 0<a<x<1-a<1 and such that ζ(x+yi)=+1 

or -1. Notice that if ζ(x+yi)=±1, then Re(ζ(x+yi))=±1 and                     

Im(ζ(x+yi))=0, implying then that | ( ) 1|=0x yi   . In what 

follows we tackle whether this can be true using several 
methods. First, we analyzed the above condition numerically 
by means of extensive Matlab simulations, implementing 
ζ(x+yi) both in terms of its series defi nition and in terms of 
the functional equation, seeing no difference between the 
two implementations. We have observed that the function 
is symmetric with respect to y, and therefore studied it only 
for y≥0. In Figure 1 we show surface plots of | ( ) 1|s   (with s 
=x+yi). We see that the function is always strictly larger than 
zero in the considered domains. Both fi gures also give an 
intuition of what is the structure of the respective functions, 
with oscillations coming from the sinusoidal part in the 
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functional defi nition of the zeta function. 

In addition, we have minimized both functions to the best 
of our numerical capabilities using a gradient-free Nelder-
Mead algorithm with Matlab. Up to machine precision, it was 
impossible to fi nd exact zeros for 0<x<1 (we found the minimum 
with magnitude around 0(10-5)). The Matlab code is provided 
in Appendix A. Our analysis has also shown that it is possible 
to fi nd exact zeros for x∉ (0,1). For instance, using Matlab 
minimization with Nelder-Mead methods we could fi nd exact 
zeros for 1400x  . In addition, using WolframAlpha to solve the 

system of equations Re(ζ(x+yi)) = 1 and lm(ζ(x+yi))=0, we found 

exact zeros at values such as, (x,y)=(53.7781,9.0647),(54.8643,-

4.5323),(55.2193,-9.0647),…, clearly beyond the considered 
domain, and with similar conclusions for the case Re(ζ(x+yi)) = 

-1, fi nding exact zeros at values such as. (x,y)=(-5.0154,5.5222),(-

5.0154,-5.5222),(-3.3476,14.2831),… . Details are also provided in 
Appendix A. Therefore, 2| ( )|x yi   does not have a maximum 
or a minimum for some x+yiC with 0<a<x<1-a<1, and the 
same happens for |ζ(x+yi)|, hence it cannot be possible that 
ζ(a+yi) = ζ(1-a+yi) = 0 . So, we arrive at a contradiction. This 
implies that if ζ(s) has any zero with 0<Re(s)<1, then the real 
part cannot be different to 1/2, but instead equal to 1/2, as we 
wanted to prove. This observation is correct within the validity 
and capacity of our numerical calculations. 

Next, we consider the second direction of the implication.

ii  If  R ( ) = 1 / 2  then   such that (1 / 2 ) = 0e s y yi  

To prove this statement, we should prove that yR 
such that  ζ(1/2+yi)=0, that is, such that Re(ζ(1/2+yi))=0 and 
lm(ζ(1/2+yi))=0.

We use again reduction to absurdity. That is, we will assume 
that y  such that Re(ζ(1/2+yi)) = 0 and lm(ζ(1/2+yi))=0. 
And this means that by applying logic rules for the negation 
of quantifi ers and the Morgan law to negate conjunction, we 
must prove that ⱯyR it is satisfi ed that Re(ζ(1/2+yi)) ≠ 0 or 
Im(ζ(1/2+yi)) ≠0.

Hence, let us assume that ⱯyR it is satisfi ed that ζ(1/2+yi) 
= a+bi≠0. Below we analyze if it can be satisfi ed that b≠0 or 
a≠0.

b≠0: In such case this implies that ⱯyR the imaginary 
part has always the same sign. However, using Proposition 2, 

(1 /2 ( ) )= (1 /2 )= =y i yi a bi a bi      . That is, ⱯyR, we have 

that Im(ζ(1/2+yi)) changes its sign between -y and y. Hence, 
using Bolzano's theorem, it will be zero between -y and y. 
Therefore, we arrive at a contradiction, and this implies that 
yR such that the Im(ζ(1/2+yi))=b=0. 

a≠0: In such case this implies that yR the real 
part has always the same sign. However, we know 
that (1 /2)= 1.4603545088...  , and for instance, 

(1 /2 5 )=0.7018123711... 0.2310380083...i i   . That is, for y = 0 
the real part is negative, whereas for y = 5 it is positive. Hence, 
using Bolzano's theorem, the real part will be zero between y = 
0 and y = 5. Therefore, we arrive again at a contradiction, and 
this implies that yR such that Re(ζ(1/2+yi))=a=0. The plot in 
Figure 2 shows this case.

Therefore, in both cases, we arrive at a formal contradiction, 
and this implies that it cannot be possible that y  such that 
Re(ζ(1/2+ yi))=0 and lm(ζ(1/2+yi))=0, or what is the same, that 
ⱯyR it is satisfi ed that Re(ζ(1/2+yi)) ≠0 or lm(ζ(1/2+yi)) ≠0.

So, this implies that yR such that ζ(1/2+yi)=0, as we 
wanted to prove. 

Constraints on  the zeros

To fi ne-tune the above analysis, our next question is: how 
are these yR such that ζ(1/2+ yi)=0? Let us analyze this below.

Let yR be a real number such that ζ(1/2+yi) = a+bi≠0, that 
is, such that the real and imaginary parts of that ζ(1/2+yi) are 
not simultaneously 0. Then, using the functional equation 
Eq.(1) we have that 

1 2 1 1= = (2 ) sin .
2 4 2 2 2

yi yyi a bi i yi yi   


       
            

       
 

                (18)

And using Proposition 2 we know that ζ (1/2-yi) = a-bi. So, 
this implies that 

2 1= (2 ) sin ( ).
4 2 2

yi ya bi i yi a bi 


   
       

   
             (19)

Then, since a-bi ≠0, we have that 

!"# !"#A B

Figure 1: Modulus of (a) ζ(s)-1  and (b) ζ(s)+1, for 0<Re(s)<1  and  0<Im(s)<80. The 
function is symmetric with respect to Im(s)  -Im(s).

Figure 2: Real part of ζ(1/2+yi) for -1<y<5. 
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2 1= (2 ) sin ,
4 2 2

yia bi y i yi
a bi

 


   
         

2( ) 2 1= (2 ) sin ,
( )( ) 4 2 2

yia bi y i yi
a bi a bi

 


   
          

2 2

2 2

2 2 1= (2 ) sin ,
4 2 2

yia b abi y i yi
a b

 


    
         

2 2

2 2 2 2

2 2 1= (2 ) sin .
4 2 2

yia b ab yi i yi
a b a b

 


   
           

           (20)

Hence, 

2 2

2 2

2 1R (2 ) sin = ,
4 2 2

yi y a be i yi
a b

 


     
            

2 2

2 1 2I (2 ) sin = .
4 2 2

yi y abm i yi
a b

 


    
            

          (21)

Let us now call 

2 1( )= (2 ) sin .
4 2 2

yi yf y i yi 


   
     

   
             (22)

The behavior of this function is shown in Figure 3a,b. We 
see also in Figure 3c that the function also satisfi es |f(y)|=1 for 
all y.

Then, if we call c(y)=Re(f(y)) and d(y) = lm (f(y)), since 

|f(y)| = 1, we have that 

2 2( ( )) ( ( )) =1.c y d y              (23)

Therefore, if c(y)= ±1 then d(y) = 0, and if d(y)=±1 then c(y) 
= 0. If we now analyze these cases using Eq.21, we have the 
following:

a) Case ( )= 1c y   and ( )=0d y : 

2 2

2 2
1 = ,a b

a b





2 2

20= .ab
a b

                 (24)

That is: 

2 2 2 2= ,a b a b  

0=2 .ab                (25)

From the fi rst equation we obtain a = 0 and then the second 

equation is always satisfi ed for all b, included b=0. Therefore, if 

c(y) = -1 and d(y) = 0, then a+bi can be equal to 0.

b) Case ( )=1c y  and ( )=0d y : 

2 2

2 2
1 = ,a b

a b



2 2

20= .ab
a b

                (26)

That is: 

2 2 2 2= ,a b a b 

0=2 .ab               (27)

From the fi rst equation we obtain b = 0, and then the second 
equation is always satisfi ed for all a, included a =0. Therefore, 

if c(y) = 1 and d(y) = 0 then a+bi can be equal to 0.

c) Case c(y) = 0 and d(y) = 1: 

2 2

2 2
0= ,a b

a b



2 2

21 = .ab
a b

                 (28)

That is: 

2 20= ,a b

2 2 =2 .a b ab                    (29)

From the second equation we obtain (a-b)2 = 0, ie a = b, and 
then the fi rst equation is always satisfi ed, included for a = b = 
0. Therefore, if c(y) = 0 and d(y) = 1, then a+bi can be equal to 0.

d) Case ( )=0c y  and ( )= 1d y  : 

2 2

2 2
0= ,a b

a b



2 2

21 = .ab
a b




             (30)

That is: 

2 20= ,a b

2 2 =2 .a b ab                  (31)

From the second equation we obtain (a+b)2 = 0, ie a = -b, 
and then the fi rst equation is always satisfi ed, included for a 

= b = 0. Therefore, if c(y) = 0 and d(y) = -1, then a+bi can be 
equal to 0.

Hence, as a consequence of the results obtained above, we 
can not assume that ζ(1/2+yi)=a+bi≠0 for all yR. Therefore, 
yR, satisfying any of the four cases analyzed above, such that 
ζ(1/2+yi)=a+bi=0, as we wanted to prove. 

Conclusion

In this paper, we have analyzed the Riemann  hypothesis. 
Our objective has been, from the beginning, to validate whether 

Figure 3: Function f(y) for (a)  -10<y<10 and (b) 10<y<24, separated for ease of 
identifi cation of different behaviour regimes. (c) Modulus |f(y)| for -10<y<10. The 
same behaviour for the modulus is observed no matter the value of y. 
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this hypothesis is true or not. We did such validation using the 
functional equation of the zeta function, and stating that, if 
and only if the real part of a complex number was equal to 1/2, 
only then could we fi nd a real number y such that ζ(1/2+yi) 
was equal to zero, so that the non-trivial zeros of the function 
all lie on the strip line 1/2+yi. We began our study by stating 
and proving two propositions. The fi rst proposition was the 
key step in order to start building the whole analysis that we 
presented in this paper. For this analysis, we have used the 
functional equation of ζ(s) for sC with 0<Re(s)<1, and using 
the absurdity reduction method, we assumed that the zeros of 
ζ(s) can have their real part equal to a≠1/2 and 0<a<1, reaching 
a contradiction. This is obtained after an analytical study based 
on a complex function, and its modulus as a real function 
of two real variables, combined with an intensive numerical 
analysis up to the best of our computational resources in order 
to check the strict positivity of the given modulus function. 
Additionally, using also the absurdity reduction method, in 
combination with some logic rules to negate a quantifi er and 
Morgan's law, we showed analytically that if Re(s)=1/2, then 
yR such that ζ (1/2+yi) = 0. Moreover, we provided analytical 
conditions that should be satisfi ed by the y values candidates, 
so that ζ(1/2+yi) = 0.

We need to remark again that, needless to say, the numerical 
analysis methods implemented with Matlab and Wolfram Alpha 
work under certain typical assumptions, like not exceeding 
a certain accepted minimum and small enough error, as well 
as limitations coming from potential sources of error such as 
rounding in fl oating point operations and machine precision.

This work is one more step toward assessing the validity 
of Riemman's conjecture. As such, we have proven here that 
the conjecture is true, up to the best of our numerical analysis 
for the strict positivity of | ( ) 1|x yi    for 0<x<1. Our analysis 
shows that this function is never exactly zero in this interval, 
to the best of our computational power, and we see no tendency 
for a change. Given that the rest of the derivations here are 
fully analytical, this leads us to say that, to the best of our 
capabilities, we believe that Riemann's conjecture is true.

Acknowledgement

We acknowledge Prof. Richard Taylor, from Stanford 
University, for an insightful comment on a previous version of 
this manuscript. Fruitful discussions over the years with many 
mathematicians and physicists' colleagues about the validity 
and applications of the conjecture are also acknowledged. 
Finally, we also acknowledge computational support from 
Mathworks and Wolfram.

(Appendix- A)

References

1. Bertrand R. Ueber die Anzahl der Primzahlen unter einer gegebenen Groesse, 
Monatsberichte der Berliner Akademie. 1859.

2. Enrico B. The Riemann Hypothesis - offi  cial problem description (PDF), 
Clay Mathematics Institute. 2000; retrieved February 21, 2011. Reprinted in 
(Borwein, et al. 2008).

3. Guillermo LS. El problema cuya solución quizás conozcan en el cielo, Naukas. 
2014. https://naukas.com/2014/05/26/el-problema-cuya-solucion-quizas-
la-conozcan-en-el-cielo/https://naukas.com/2014/05/26/el-problema-cuya-
solucion-quizas-la-conozcan-en-el-cielo/

4. See, for instance. https://en.wikipedia.org/wiki/Millennium_Prize_
Problemshttps://en.wikipedia.org/wiki/MillenniumPrizeProblems

5. Lawrence WC, Ambrose Y. Analogues of the Robin-Lagarias Criteria for the 
Riemann Hypothesis, International Journal of Number Theory. 2021; 17:04; 
843-870.

6. Fabrizio T, Ignazio L. Majorana quanta, string scattering, curved spacetimes 
and the Riemann Hypothesis, Physica Scripta. 2021; 96: 125276.

7. Giuseppe M, Andre L. Randomness of Mobius coeffi  cients and Brownian 
motion: growth of the Mertens function and the Riemann Hypothesis, J. Stat. 
Mech. 2021; 113106.

8. Andrés C, Quesada-Herrera E. The second moment of ( )nS t  on the Riemann 
hypothesis, International Journal of Number Theory. 2022; 18:06; 1203-1226.

9. Gaugry V, Louis J, Radhakrishnan N, Michel W. On good universality and the 
Riemann hypothesis, Advances in Mathematics. 2021; 385:107762.

10. Panos B, Nava G, Olga P. Black holes, quantum chaos and the Riemann 
hypothesis, SciPost Phys. Core. 2021; 4:032.

11. André L. Riemann Hypothesis and Random Walks: the Zeta case, Symmetry. 
2014; 2021:13.

12. Atul D, Shivajee G, Akshaa V. A modular relation involving non-trivial zeros of 
the Dedekind zeta function, and the Generalized Riemann Hypothesis, Journal 
of Mathematical Analysis and Applications. 2022; 515: 2; 15.

13. Norio K. An analogue of the Riemann Hypothesis via quantum walks, Quantum 
Studies: Mathematics and Foundations. 2022; 9:367-379.

14. Archit A, Meghali G, Bibekananda M. Proc. Amer. Math. Soc. 2022.

15. André V. Discretized Keiper/Li approach to the Riemann Hypothesis, Exp. 
Math. 2020; 29(4):452-469.

16. Hugues B, Yves L, Thomas R. a positivity conjecture related to the Riemann 
zeta function, American Mathematical Monthly. 2019; 126:891-904.

17. Goran R. Quasiperiodic sets at infi nity and meromorphic extensions of their 
fractal zeta functions, Bull. Malays. Math. Sci. Soc. 2023; 46:107.

18. Kathrin B, Ben K. Generalized L-functions for meromorphic modular forms and 
their relation to the Riemann zeta function. arXiv:2112.12943.

19. Brian CJ. The Riemann Hypothesis, Notice of the AMS. 2003; 50(3):341-353.

20. Chengyan L. Riemann Hypothesis, arXiv:math/9909153.

21. Yaqing L, Deng-Shan W. Exotic wave patterns in Riemann problem of the 
high-order Jaulent-Miodek equation: Whitham modulation theory, Studies in 
Applied Mathematics. 2022; 149(3):588-630.

22. Michel B. An arithmetical function related to Báez-Duarte's criterion for 
the Riemann hypothesis, In: Rassias, M.T. (eds) Harmonic Analysis and 
Applications. Springer Optimization and Its Applications. Springer. 2021; 168. 

23. André L, x Giuseppe L. Generalized Riemann Hypothesis, Time Series and 
Normal Distributions, J. Stat. Mech. 2019; 023203.

24. Matt V. Variants on Andrica's conjecture with and without the Riemann 
hypothesis, Mathematics. 2018; 6:12; 289.

25. Giuseppe M, André L. Generalized Riemann Hypothesis and Stochastic Time 
Series, J. Stat. Mech. 2018; 063205.

26. Ivan C. Riemann Hypothesis for DAHA superpolynomials and plane curve 

https://www.peertechzpublications.com/articles/Appendix-A-AMP-6-183.zip


082

https://www.peertechzpublications.com/journals/annals-of-mathematics-and-physics

Citation: Orús-Lacort M, Orús R, Jouis C (2023) Analyzing Riemann's hypothesis. Ann Math Phys 6(1): 075-082. DOI: https://dx.doi.org/10.17352/amp.000083

singularities, Communications in Number Theory and Physics. 2018; 12:3; 
409-490.

27. Emanuel C, Andrés C. Bounding ( )nS t  on the Riemann hypothesis, Mathematical 
Proceedings of the Cambridge Philosophical Society. 2018; 164:259-283.

28. Sandro B, Steven GM. The =   conjecture implies the Riemann hypothesis, 
Mathematika. 2017; 63:01; 29-33.

29. Tomoki K. The Riemann hypothesis and holomorphic index in complex 
dynamics, Exp. Math. 2018; 27:37-46.

30. Ade SI. Two estimates on the distribution of zeros of the fi rst derivative of 
Dirichlet L-functions under the generalized Riemann hypothesis, J. Théor. 
Nombres Bordeaux. 2017; 29:2; 471-502.

31. Takashi N. A complete Riemann zeta distribution and the Riemann hypothesis, 
Bernoulli. 2015; 21:1; 604-617.

32. Eugene B. Riemann zeta function and quantum chaos, Progress of theoretical 
physics supplement. 2007; 166:19-44.

33. German S. A physics pathway to the Riemann hypothesis, Julio Abad "in 
Memoriam", edited by Manuel Asorey Carballeira, José Vicente García Esteve, 
Manuel F Ranada, J Sesma, 2009. ISBN 978-84-92774-04-3.

34. Remmen GN. Amplitudes and the Riemann Zeta Function. Phys Rev Lett. 
2021 Dec 10;127(24):241602. doi: 10.1103/PhysRevLett.127.241602. PMID: 
34951795.

35. Román O, Samuel M, Enrique L. Quantum computing for fi nance: overview and 
prospects, Reviews in Physics. 2019; 4:100028.

36. Andrew G. Harals Cramér and the distribution of prime numbers, Scandinavian 
Actuarial Journal. 2011; 1995:1; 12-28.

37. See, for instance, https://en.wikipedia.org/wiki/RSA_(cryptosystem)https://
en.wikipedia.org/wiki/RSA(cryptosystem)

38. Peter SW. Algorithms for quantum computation: discrete logarithms and 
factoring, Proceedings 35th Annual Symposium on Foundations of Computer 
Science. IEEE Comput. Soc. Press: 1994; 124-134.

39. Paul D, Alexander A. Random matrix theory in statistics: A review, Journal of 
Statistical Planning and Inference. 2014; 150:1-29.

40. Xin WZ. A Survey of Large Language Models, arXiv:2303.18223.

41. Christophe J, Mercedes OL. How to extract knowledge of Qualitative Data 
from Big Textual Data, SCIREA Journal of Computer. 2021; 6:1; 18-53.

 

 
 

 


