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Abstract

After motivation from Geraghty-type contractions and of Farhan, et al. we defi ne -admissible mappings and demonstrate the fi xed point theorems for the above-
mentioned contractions in rectangular metric space in this study. In the end, we discuss some consequences of our results as corollaries. 
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Introduction

Banach provided a method to fi nd the fi xed point in the entire metric space in 1922. Since then, numerous researchers have 
attempted to generalise this idea by working on the Banach fi xed point theorem (see [1-9], [11-22],[26,27]). The term "   admissible 
mappings in metric space" pertains to the innovative concepts in mappings that Samet, et al. [27] pioneered in 2012. Recently, in 
2013 Farhan, et al. [2] gave new contractions using  -admissible mapping in metric spaces. In continuation of generalization of 
Banach contraction principle, in 2018, Karapinar introduced the notion of interpolative contraction via revisiting Kannan contraction 
which involves exponential factors. Combining the interpolative contractions with linear and rational terms several authors defi ned 
hybrid contractions and proved fi xed point theorems for these contractions see(16,24-25). We'll generalize Farhan's, et al. [2] 
contractions in the following paper and provide fi xed point theorems for them.

P reliminaries

To prove our main results we need some basic defi nitions from literature as follows:

Defi nition 2.1: [10] Let   be a set. A rectangular metric space (RMS) is an ordered pair ( , )   where   is a function :   
such that 

1. ( , ) 0  , 

2. ( , ) = 0 iff =  

3. ( , ) = ( , )    , 

4. ( , ) ( , ) ( , ) ( , )u u v v       
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For all , , ,u v  .

Defi nition 2.2: [10] A sequence  n  in ( , )RMS    is said to converge if there is a point   and for every > 0  there exists 

N  such that  , <n    for every >n N . 

Defi nition 2.3: [10] A sequence  n  in a ( , )RMS    is Cauchy if for every > 0  there exists N  such that  , <n m    for 
every n,m>N.

Defi nition 2.4: [10] ( , )RMS    is said to be complete if every Cauchy sequence is convergent.

Defi nition 2.5: [27] Let :f   and : [0, )   . We say that f is an -admissible mapping if ( , ) 1    implies 

( , ) 1, ,f f     .

Main Results

Theorem 3.1: L et ( , )   be a complete RMS and :T   be an  - admissible mapping. Assume that there exists 

a function :[0, ) [0,1]    such that, for any bounded sequence  tn  of positive reals,   1tn   implies 0tn  and 

( , ) ( ( , )) ( , )( ( , ) ( , ) 1) 2  ,  and 1T T M MT T l                           (3.1)

where: ( , ), ( , ) ( , )(1 ( , ))( , ) = max{ ( , ), ( , ), ( , ), , }
( , ) 1 ( , )

T T T TM T T       
 

     
 

      
 

Suppose that if T is continuous and there exists 0  such that  , 10 0T   , then T has a fi xed point.

Proof Let 0  such that  , 10 0T   . Construct a sequence  n  in   as =1 T nn  , n  .

If =1 nn  , for some n , then =T n n   and we are done.

So, we suppose that  , > 0,1 nn n     .

Since T is -admissible, there exists 0   such that  0 0, 1T    which implies  0 1, 1   . 

Similarly, we can say that    2, = , 11 2 0 0T T      .

By continuing this process, we get 

 , 1,  1 nn n                   (3.2)

By using equation (3.2), we have 

    , ,1 12 , , 11 1

, ,1 12

T T T Tn nn nT Tn nn n

M Mn nn n

 



   
      
   

    
            

    

 

   
   

   

Now using equation (3.1), we get 

      1 1 1, , , ,n n n n n nM M                   (3.3)

Where 

 

         
 

    
 

      

1

1 1
1 1 1

1

1 1

1

1 1 1

, =
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, , , , , ,
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n n n n
n n n n n n
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Assume that if possible  , > ,11)n nnn




      .

Then,    , = ,1 1M n nn n     .

Using this in equation (3.3), we get 

      , < , ,1 1 1n n nn n n                   (3.4)

   , < ,1 1n nn n      , which is a contradiction.

So    , , ,1 1 nn nn n       .

It follows that the sequence   , 1n n    is a monotonically decreasing sequence of positive real numbers. So, it is convergent 

and suppose that  , =lim 1 dn n n   . Clearly, 0d  .

Claim: d = 0.

Equation (3.4) implies that

 
   , 1 , 11,1

n n
nn

nn


     

 
 

 

Which implies that   , =1lim 1n nn    .

Using the property of the function , we conclude that d = 0, that is 

 , = 0.lim 1n nn
 
                (3.5)

In the similar way, we can prove that 

 , = 0lim 2n nn
 
                (3.6)

Now, we will show that  n  is a Cauchy sequence. Suppose, to the contrary that  n  is not a Cauchy sequence. Then there 

exists > 0  and sequences m(k) and n(k) such that for all positive integers k, we have ( ) > ( ) > , ,( ) ( )n k m k k n k m k
 
 
 

     and 

, <( ) ( ) 1n k m k
 
 
 

    .

By the triangle inequality, we have

, , , ,( ) ( ) ( ) ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( )

< , , ,( ) 1 ( ) 1 ( ) 1 ( )

n k m k n k m k m k m k m k m k

m k m k m k m k

       
       
       

   
   
   

      

   

       

   

for all k .

Taking the limit as k  in the above inequality and using equations (3.5) and (3.6), we get 

, = .lim ( ) ( )n k m kk
 
 
 




  
             (3.7)

Again, by triangle inequality, we have 

, , , ,( ) ( ) ( ) 1 ( ) ( ) 1 ( ) ( ) 1 ( ) 1

, , , , .( ) 1 ( ) 1 ( ) ( ) 1 ( ) ( ) ( ) 1 ( )

n k m k m k m k n k n k n k m k

n k m k m k m k n k m k n k n k

       
       
       

       
       
       

      

      

       

       

Taking the limit as k , together with (3.5) - (3.7), we deduce that 
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, = .lim ( ) 1 ( ) 1n k m kk
 
 
 

  
  

             (3.8)

From equations (3.1), (3.2), (3.6) and (3.8), we get 

,, ( ) 1 ( ) 1( ) 1 ( ) 12 , , 1 ,( ) ( ) ( ) ( )
n k m kn k m k T Tn k n k m k m k 

  
  
             

        

     
  

   

( ) ( )= , , 1( ) ( ) ( ) ( )
T Tn k m kT Tn k n k m k m k 

 
 
  
     

        




 
   

, ,( ) ( ) ( ) ( )2
M Mn k m k n k m k

    
    
           

   
             (3.9)

 

, =( ) 1 ( ) 1

, , , , , ,( ) 1 ( ) 1 ( ) 1 ( ) ( ) 1 ( )

, 1 ,, , ( ) 1 ( ) 1 ( ) 1 ( )( ) 1 ( ) 1 ( ) 1 ( ) 1 ,
,( ) 1 ( ) 1

M n k m k

n k m k n k n k m k m k

max T TT T n k n k m k m kn k n k m k m k

n k m k
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1

1 ,( ) 1 ( ) 1
=

, ,( ) 1 ( ) ( ) 1 ( ), , , , , , ,( ) 1 ( ) 1 ( ) 1 ( ) ( ) 1 ( ) ,( ) 1 ( ) 1

,( ) (

n k m k

n k n k m k m k
n k m k n k n k m k m k

n k m k
max

n k n

 
 
 
         
    

  

   
            

            
 
 



  

  
     

  



 

   
     

 

  1 ,) 1 ( ) 1 ( )

1 ,( ) 1 ( ) 1

k m k m k

n k m k

 
 
 
 
  
 

     
          

      

 

  

 

 

Taking k , we have

, = max{ ,0,0,0,0}( ) 1 ( ) 1M n k m k
 
 
    

So, equation (9) implies that

, , , 1( ) 1 ( ) 1 ( ) ( ) ( ) ( )M Mn k m k n k m k n k m k      
          

        

Letting k  , we get

, =1lim ( ) ( )k n k m k   
   

  

By using defi nition of  function, we get

, = 0 <lim ( ) ( )k n k m k
 
 
 

     , 

which is a contradiction.

Hence,  n  is a Cauchy sequence.

Since ( , )   is a complete space, so  n  is convergent and assume that n    as n  .

Since T is continuous, then we have

= = =lim lim 1T T n nn n  
   

So,   is a fi xed point of T.



112

https://www.peertechzpublications.org/journals/annals-of-mathematics-and-physics

Citation: Devi S, Pankaj (2023) Some fixed point results in rectangular metric spaces. Ann Math Phys 6(2): 108-113. DOI: https://dx.doi.org/10.17352/amp.000089

Theorem 3.2: Assume that all the hypothesis of Theorem 3.1 hold. Adding the following condition:

If = , then ( , ) 1T T �  

We obtain the uniqueness of fi xed point.

Proof: Let z and 
*z  be two distinct fi xed point of T in the setting of Theorem 3.1 and above defi ned condition holds, then

 * *( , ) 1 and , 1z Tz z Tz  

So, 

 
* *, ,* *2 1 ( , ) ,

Tz Tz Tz Tz
z Tz z Tz 

   
   
   
    

 
 

 
 

* *, ,
2
M z z M z z    

    
         

            (3.10)

Where  
   

 
 

 
 

* *, , ( , ), , ,

* * ** *, = max ( , ) 1 ,( , ) ,
,* *, 1 ,

z z Tz z Tz z

M z z z Tz Tz zz Tz Tz z

z z z z

 
 
     

  
 
  

  

  

 

 *= , .z z

So, equation (3.10) implies

       
 

 

* * * *, = , , ,

*, =1

* *, = 0 =

z z Tz Tz z z z z

z z

z z z z





 
 
 

 
 
 

    

 

 

Corollary 3.3: Let ( , )   be a complete RMS and :T   be an -admissible mapping. Assume that there exists 

a function :[0, ) [0,1]    such that, for any bounded sequence  tn  of positive reals,   1tn   implies 0tn  and 

( , ) ( ( , )) ( , )( ( , ) ( , ) 1) 2T TT T                 for all ,  where 1l  . Suppose that if T is continuous and there exists 

0  such that  , 10 0T   , then T has a fi xed point. 

Proof: Taking ( , ) = ( , )M     in Theorem 3.1, one can get the proof. 

Corollary 3.4. Assume that all the hypotheses of Corollary 3.3 hold. Adding the following condition:

(a) If = ,  then ( , ) 1T T     ,

we obtain the uniqueness of the fi xed point of T.

Proof: Taking ( , ) = ( , )M     in Corollary 3.3. 
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