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Abstract

Information is physically measurable as a selection from a set of possibilities, the domain of information. This defi nes the term "information". The domain of the 
information must be known together reproducibly beforehand. As a practical consequence, digital information exchange can be made globally effi  cient, interoperable, 
and searchable to a large extent by online defi nition of application-optimized domains of information. There are even more far-reaching consequences for physics. The 
purpose of this article is to present prerequisites and possibilities for a physical approach that is consistent with the precise defi nition of information. This concerns 
not only the discretization of the sets of possible experimental results but also the order of their defi nition over time. The access to or comparison with the domain of 
information is more frequent, the earlier it was defi ned. The geometrical appearance of our space is apparently a delayed statistical consequence of a very frequent 
connection with the common primary domain of information. 
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1. Introduction: The domain of information

The basis of the approach presented here is the exact 
defi nition 1.1 of information as a selection from a commonly 
known (fi nite) set (the domain of information). This is new 
and could trigger a controversial debate. For example, every 
meter of distance that we together can measure is due to this 
defi nition considered a discrete common set of possibilities for 
physical information. Such a consistent information-theoretic 
basis of physics is missing so far. So the use of a priori infi nite 
sets (e.g. of continuous numbers) is widespread, but not 
consistent with the defi nition 1.1. If someone wants to ignore 
defi nition 1.1, he/she should provide a well-defi ned (set theoretic) 
alternative to 1.1. Otherwise, it is clear: Since the information is 
a selection from the set of its possibilities (from the domain of 
information), and this set must be known beforehand (i.e. as 
part of fi nite past), in theoretical physics even a well-defi ned 

approach to real (fi nite) information and also to (in the past 
fi nite) time is required. The article shows approaches on how to 
get closer to the solution of this problem.

The importance of defi nition 1.1 arises from the fact 
that information is a fundamental part of our existence - 
information shapes our lives. Scientifi c disciplines such as 
information science and computer science deal with information 
processing. Nevertheless, the term "information" has not yet 
been precisely defi ned. Strictly speaking, the lack of an exact 
defi nition of information is a shortcoming (which also leads 
to critical literature [1,2]), because elementary information is 
by no means fuzzy: Physically, the transport of elementary 
information is done by energy quanta (this will be discussed 
further in section 3.7) or technically by "bits". Each bit means 
a selection from a set of 2 possibilities. Bits are used to encode 
numbers. These are selections from ordered sets, which can 
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also be very large. Thus the conditions are given to start as 
sharp as usual in mathematics: with set theory. We know from 
mathematics that it is possible to build very complex and well-
founded approaches starting from ordered sets. A systematic 
and effi cient approach is thus made possible.

Digital and all other physical information is exchanged 
as the reproducible result of a (physical) measurement and 
represents no more and no less than a reproducible selection 
from the ordered set of all possible measurement results. 
This set of possibilities is the "domain" of information. The 
common order is necessary for reproducible selection. Thus, 
"information" can be considered as a result of a mathematical 
function. This function has a domain, and the function result 
is an element (the selected possibility) of the domain of 
information. This basic principle even defi nes information:

1.1 Theorem (Defi nition of information)

Information is a reproducible selection from its domain.

The domain of information (i.e. its selectable elements 
and their order) must be reproducibly known by all those 
exchanging the information, i.e. after a reproducible sequence 
of elementary steps, the information exchanged must be 
identical for all. From this follows also the fi niteness of the 
domain (within fi nite time).

We can say abbreviated: The domain of information must 
be uniformly defi ned for all and is inseparable from the 
information. This principle is pervasive and substantially 
underestimated.

1.2 Digital application of the defi nition of information

The relevance of the exact defi nition 1.1 of information is 
obvious in computer science. We could apply it systematically 
and effi ciently by using the Internet to defi ne the domains of 
digital information globally in a uniform way for all users. Digital 
information is always a sequence of numbers, i.e. a selection 
from ordered sets. For example, we can start with sequences 
of "quantitative data" and optimize them for the application 
of interest. This has already been explained and described in 
detail [3]. The resulting exchanged binary information is called 
"domain vector" or "DV" and has the structure:

DV: UL plus UL plus number sequence 

"UL" means "Uniform Locator" and is an effi cient global 
pointer to the machine-readable online defi nition of the 
number sequence. The domain of the number sequence is thus 
automatically defi ned uniformly worldwide (as the domain of 
the transported information). In this way, interoperable and 
searchable digital information could be uniformly defi ned 
online worldwide. It would be optimizable for the respective 
application and precisely comparable and searchable. This 
is also demonstrated online. With respect to the digital 
application, essential conclusions are thus obvious: The data 
structure of the DV can effi ciently encode all possible types 
of digital information and make them globally exchangeable, 
comparable, and searchable in an energy-saving manner.

Despite considerable technical, scientifi c, and economic 
importance, the (uniform) online defi nition of digital 
information (number sequences) has not yet been introduced. 
The alternative is the repeated non-uniform local defi nition 
in all possible formats - this is much less effi cient, mostly not 
comparable, and thus incompatible ("non-interoperable"), it 
causes an enormous amount of unnecessary redundant work in 
programming and especially in application. Therefore, it would 
be appropriate to teach and systematically deepen the much 
more effi cient uniform global (online) defi nition of digital 
information.

The systematic digital utilization of defi nition 1.1 is only 
one of many possible applications. A consequent analysis 
of 1.1 goes to the heart of the matter and can infl uence the 
worldview. Not only does it show that our frame of reference 
must be completely connected a priori, but it also shows 
combinatorial details. In [3] it was already briefl y mentioned 
that 1.1 holds without exception. Since "information" is of 
central importance to us, so is its defi nition 1.1. Information and 
its domain even shape our consciousness. At this, the access 
(comparison with) the domain is mostly fast and unconscious. 
For example, language vocabulary as a common domain of 
linguistic information exchange must be quickly available or 
"familiar" to all communicators.

In general, it turns out that domains learned earlier usually 
allow faster access. Our brain learned the vocabulary of our 
body's nerve impulses early on and now uses this knowledge 
unconsciously and quickly. Later, it learned the signals of 
our environment. This also opens up possible applications 
in psychology - that would be another area that could be 
systematically expanded.

The basic principle 1.1 is superordinate. Everywhere where 
information plays a role (and these are many subject areas) 
applications can arise.

Strictly speaking, fundamental physics is the original 
science about information, because the result of every physical 
experiment is information and also means a selection from the 
set of possible experimental results. This is just the domain of 
the resulting information according to 1.1. In section 4.7 of [3], 
it was already mentioned that the (implicit) knowledge of the 
domain of information 1.1 and the resulting combinatorics is a 
far-reaching topic for research in physics. 

This article shall therefore show prerequisites and fi rst 
possibilities towards a physical approach, which is compatible 
with the exact defi nition 1.1 of information.

2. Materials and methods: Mathematical to-
ols for the analysis of the domain of infor-
mation

Until today, the consideration of the exact defi nition 1.1 
of information has not been focused in physics. It has not 
been systematically explored why (together with relativity) 
there is always a common order of "time" for the exchange of 
information. Thus, this topic can be extended and can lead to 
surprising conclusions.
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Naturally, defi nition 1.1 of information fi rst concerns 
theoretical physics, especially quantum mechanics. The 
consequent application of 1.1 is very far-reaching, unusual, 
and new. Therefore, there is a danger that the arguments put 
forward here will not be taken seriously. On the other hand, it 
quickly becomes clear that silence does not provide a solution 
either because a convincing concept (even the defi nition of 
time) must be in accordance with 1.1. However, fundamental 
concepts commonly used in theoretical physics start from 
other basics than 1.1. Starting from the usual geometrical view, 
classical theoretical physics was fi rst introduced. When this 
was no longer suffi cient, quantum mechanics was developed. 
Here interesting and important relations were uncovered 
and more exactly analyzed how measured information 
infl uences the future entire (worldwide) reality. Also, Hilbert 
spaces were introduced, which are closed and separable [4], 
i.e. they contain a countable dense set and have a countable 
orthonormal basis. The term "countable" already implies 
a systematic constructability of the set. But still, a priori 
(time-independent) infi nite sets are used, for example for the 
description of location and momentum, as it was common in 
classical geometrical concepts. These compromises were chosen 
because they were helpful in practice for a quick explanation of 
experimental results. The geometric view still plays an essential 
role, despite the experimentally detectable quantization of the 
exchanged energy measurable in experiments (ultimately as 
information). Note, that complex, hierarchical combinatorics 
and multidimensional, ever-increasing sets are not the 
problem. The problem lies in concepts (e.g. sets) that allow 
time-independent "existing" infi nity. Continuous sets allow 
far too much freedom - without equivalent in reality. From 
the point of view of information theory, a priori infi nite sets 
and thus the "real numbers" (routinely used in geometry) 
are completely incompatible with 1.1. Every fi nite interval of 
a continuous set different from 0 contains infi nitely many 
elements independent of time. To "know" them, one needs 
an infi nite amount of (ultimately undefi ned) information 
- such a thing is not real. The real numbers are helpful for 
many practical argumentations and are also necessary here for 
bridging existing constructs with analytic functions. But we 
must not forget: A priori infi nite sets are only constructs and 
not bijectively mappable to something real. If we want to get 
much further in understanding reality, it is not enough that 
our mathematical model approximates experimental results. It 
must be discrete and it must be guaranteed that the size of the 
domains of the measurable information is only fi nite within 
fi nite measuring time. It is possible (and given the enormous 
size of the visible universe also plausible) that the size of the 
domains of information grows without limits, but only together 
with time. (Despite relativistic time dilation, macroscopic time 
reversal is not measurable, i.e. there is a common increase in 
time).

We therefore need a common concept of time increment 
that connects us for the transport and exchange of information, 
also because of 1.1. Here, a concept published years ago [5] can 
help, which, starting from the (measurable) "time dilation", 
provides a fi nite and quantitative approach to proper time as a 
"sum of return probabilities". There are several mathematical 
and structural connections and peculiarities here, which offer 
a starting point for the information-theoretical approach 1.1 
but are still unconsidered in present approaches of theoretical 

physics. Bridging to common concepts of theoretical physics 
is possible by assuming that the common "set of possibilities" 
or domain of information per proper time grows only together 
with the (common) time. The elementary steps for this can 
be done with unbounded increasing frequency (in particular 
the access to the basic primary domain, cf. section 3.7) and 
require a new combinatorial approach to the concept of time. 
This is possible and it can be shown that essential current 
computational models (e.g. geometric functions like sin(x) and 
cos(x) and also their generalization by the (matrix) exponential 
function, cf. section 3.6) can be derived from it. In the following, 
it will be introduced and discussed step by step.

The present time separates between future and past time. 
Future means "no previous information". We fi rst consider a 
basal experiment as simple as possible, which delivers exactly 
1 bit of information without prior information, i.e. a selection 
from one of 2 possibilities, e.g. drawing one of two equally 
probable balls "1" or "-1" from an urn. For possibility "1" 
we move one step to the right, and for possibility "-1" to the 
left. Let k be the position to the right of the origin after n ≥ 
0 steps. The integer k thus increases by 1 when drawing ball 
"1" and decreases by 1 when drawing ball "-1". This results 
in a so-called Bernoulli Random Walk or BRW with binomial 
distribution of the path possibilities.

Thus, n and k are integers with n≥0 and -n ≤ k ≤ n. The 
well-known Pascal's triangle or binomial distribution (Table 1) 
shows, as a function of the number of steps n, the number of 
path possibilities towards position k. These correspond to the 
binomial coeffi cients:
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The column k=0 plays a special role. It represents the 
number of return possibilities to the origin k=0. Without prior 
information (unknown future) steps to the right and the left 
have equal probability p=1/2. In this column, k=0 is also the 
symmetry center. Since this choice of this "coordinate system" 
(n, k) has many advantages and reveals interconnections, we 
defi ne the resulting symmetric probability distribution as a 
function:

  ! 1
0 ,  

2
! !

2 2

n
n

Q n k
n k n k


 

 
      

   
   

               (2)

The function Q0 represents probabilities in the symmetric 
BRW. It holds:

  Q0(n, k 1)  Q0(n, k 1)
0 1,  

2
Q n k

  
                 (3)

Equation (3) shows the algorithm of the symmetric BRW. 
We can also defi ne the general function Q with the general 
basic algorithm:

     1,  , 1  , 1Q n k a Q n k b Q n knk nk                   (4)
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Here Q(n, k)=0 for |k|>n. In the case 

0 1  1  a and b ank nk nk     we can consider ank and bnk 

as probabilities. In the general case, ank and bnk are constant 
factors, which can be called probability amplitudes for steps 
to the right and left. These can also be complex numbers or, 
more generally, matrices or linear operators, as is common in 
quantum mechanics. Obviously, (4) also applies to all linear 
combinations or superpositions:
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       (5)

The summation can also be performed only over a partial 
range, e.g. only over one step (i.e. fi xed n, e.g. n=nmax) or 
overstep sequences with different frequencies, depending on 
the proper time (8). Essential is the uniform defi nition of n 
and k and their basal synchronization, so that ank and bnk 
have constant meaning until the summation is fi nished. The 
general function Q(n, k) from (4) is defi ned only together with 
the factors ank and bnk. These must be fi xed before. The laws, 
which follow from the algorithm (4), are valid for all linear 
combinations of Q(n, k) and Q0(n, k). Certain combinations (4) 
and (5) in analytic models with continuous sets of numbers 
result in derivatives and integrals. In the following, for the 
sake of clarity, simple defi nitions will be chosen, e.g. ank = bnk 
1/2. In this constant symmetric case Q(n, k) = Q0(n, k) is valid. 
The function Q0(n, k) already has many interesting properties 
and is broadly combinable (5). This may be a reason for the 
universality of the Schrödinger equation, cf. Section 3.5.

By induction, we obtain [5]: 
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0
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The physical relevance is fi rst shown in a context that has 
already been described and derived in detail [5]: We experiment 
with an inertial frame of reference. Let c be the velocity of 
light, v the velocity of a clock relative to the observer in an 

inertial frame, and let x=v/c be the ratio to the velocity of light. 
According to the experimentally measurable relativity, the 
function f0(x) (7) shows the time dilation:
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f x

x
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That means the moving clock goes slower than the 
observer's clock by the factor f0(x). The Taylor series expansion 
of this function f0(x) is:
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                (8)

The last line (8) illustrates the relationship of time dilation 
with the return probabilities when compared with Table 1 
in k=0. Time dilation corresponds to the sum of the return 
probabilities of a BRW with probabilities p=(1-√(1-x2))/2 for a 
step to one side and p=(1+√(1-x2))/2 for a step to the other side. 
"Time" thus shows itself proportional to the number of return 
events. The symmetric case p=1/2 for both sides is particularly 
interesting. This case occurs in the case x=1 or v=c and is 
thus the rule for electromagnetic interaction. This transports 
information and here we need an exact information theoretic 
calculation, but just in this typical case, the analytic expression 
(7) for the time dilation is not usable and infi nite (a priori, thus 
not conforming to reality). On the other hand, the sum (8) is 
also possible for x=1 over a fi nite (increasing) number of steps 
and thus can be also fi nite within fi nite time. Therefore, in the 
following, we assume that the approach of a BRW (progressing 
with each increase of time) actually provides deeper insights 
into the combinatorics of reality and we will get a confi rmation 
for this.

Also important are linear superpositions or combinations of 
BRWs and their derivatives: As shown in (5), BRWs can also be 
superimposed with different prefactors (linear), for example 
with different signs (due to a conservation law). Table 2 shows 
a simple example of a superposition of two BRWs with opposite 
signs, which start with 1 in n=1 and k=-1 and with -1 in k=1. 

Table 1: Pascal triangle or "Q0 triangle": It starts in line n=0 in position k=0 with the value 1 and shows below it the number of path possibilities to position k after n steps. The 
column k=0 represents the original position and contains for n>0 the numbers of return possibilities to the origin. Multiplication with column psym gives for each row b the 
resulting probabilities without prior information, i.e. equal probabilities of 1/2 each for steps to the right (resp. k+1) or to the left (resp. k-1). At this, the column k=0 represents 
the center of symmetry.

n↓ k→ -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 psym↓
 0 1 1/1

 1 1 1 1/2

 2 1 2 1 1/4

 3 1 3 3 1 1/8

 4 1 4 6 4 1 1/16

 5 1 5 10 10 5 1 1/32

 6 1 6 15 20 15 6 1 1/64
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Because of this antisymmetric start and (3), the value 0 results 
in column k=0 for all n. In addition, antisymmetric values with 
opposite signs result for k<0 and k>0. Table 2 shows this.

We can also consider such a superposition as in Table 2 
as the fi rst discrete derivative along k. We defi ne the discrete 
derivative QD(d, n, k) of degree d by QD(0, n, k) = Q0(n, k) and 
for n≥d≥1.

   1, 1, 1 ( 1, 1, 1)
, ,  

2
QD d n k QD d n k

QD d n k
      


  

                 (9)

Here n ≥ d is necessary to have enough values at all to form 
fi nite differences of d-th order. This only becomes apparent in 
the discrete approach. For abbreviation let Q1(n, k)=QD(1,n,k) 
and Q2(n, k)=QD(2,n,k). The discrete derivatives (9) defi ned in 
this way can be calculated. In particular 
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                (11)

The derivatives, such as (10) and (11), yield polynomials as 
prefactors. Similarly, Hermite polynomials result when using 
the exponential function as the generating function [6].

Table 2 shows up to n=6 the values of the fi rst discrete 
derivative with respect to dk, i.e. the values of Q1(n, k). Because 
of exact antisymmetry around the middle column k=0, in rows 
2n-1 at k= ±1 are the "fl owing out" amounts, which according 
to (11) just correspond to the 2nd derivative Q2(2n, 0). These 
show up as coeffi cients of the Taylor series expansion of the 
function 1/f0(x) (8):
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According to algorithm (3), a new row n+1 is created in 
each step (as in Table 1) and each value in position k is created 
by adding the neighboring values of the previous row n from 
position k-1 and k+1. Starting from this elementary simple 
algorithm, deeper insights are possible, also regarding the 
growth of the domain of information together with time. 
Therefore, we will now address some possibilities for this and 
show the fi rst results.

3. Results: New approaches  and implications

3.1. Eigentime as a fi nite sum

In the case of equal probability p=1/2 for steps to the right 
and to the left, the sum (8) of the return probabilities in k=0 
grows with the number of steps n without limit. With the help 

of the Stirling formula lim ! 2  
n

n
n n

n e

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 
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 and (6) holds for 
large n [5]:
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With (6) follows
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nQ m
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Thus we have for the time dilation at v=c the expression 
(14), which depends only on the number of steps of a symmetric 
BRW.

The function f0(x) (8) and its reciprocal (12) occur often in 
geometry and physics. With (14) we have a closed form also for 
the frequent case x=1 (resp. v=c). This is compatible with the 
defi nition of information 1.1 if we assume that the sum of the 

Table 2: The "Q1 triangle" with the values Q1(n, k) (cf. (10)) starts in n=1 with 1 in k=-1 and with -1 in k=1. As in Table 1, the column k in row n+1 results from the addition of the 
values in k-1 and k+1 in row n. Due to the opposite sign of the values for k<0 and k>0, the value 0 in the column k=0 results for all n, which can be understood as a superposition 
of two BRWs with opposite signs. This results in deletion in column k=0 and the total sum of the absolute values is no longer 1 but becomes smaller and smaller. This has 
several effects, also on the renormalization.

n↓ k→ -6 -5 -4 -3 -2 -1 0 1 2- 3 4 5 6 p↓

 0 0 1/1

 1 1 -1 1/2

 2 1 0 -1 1/4

 3 1 1 -1 1 1/8

 4 1 2 0 -2 -1 1/16

 5 1 3 2 -2 -3 -1 1/32

 6 1 4 5 0 -5 -4 -1 1/64
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return probabilities (14) (and thus also the possible number of 
return events) at a given time is fi nite because it grows only 
together with time.

3.2. Estimation of the basal numb er of steps with access 
to the primary domain in this universe

The earlier a domain is defi ned, the more frequently it is 
accessed. This can be explained by the fact that domains defi ned 
earlier are also used for the defi nition of domains defi ned later. 
The access to the "primary domain" defi ned earliest at the time 
of origin of our universe occurs therefore maximally fast in 
(the part of the totality that we call) this universe, i.e. at every 
progress of our measurable time (this progress occurs for all 
of us at every exchange of energy quanta or photons, see also 
section 3.7). If we assume that also this common maximum 
measurable time progress occurs proportionally to the sum of 
the return probabilities of a primary BRW (which started in 
the symmetry center at the time of origin of our universe), we 
can try a fi rst estimation of the so far occurred "maximum" 
number of steps nmax. For this, we assume that the maximum 
measurable expansion of the universe is proportional to the 
total expansion of the primary central BRW. Because of its 
large step number, the maximum probabilities of this BRW are 
meanwhile concentrated to only a small "pointed" range, since 
the standard deviation of a BRW grows only proportionally 
to the root of the step number n. What physical interactions 
might give a clue to this?

Interactions with limited ranges such as the weak and strong 
interactions come into question. The strong interaction is the 
strongest fundamental force in nature. In this rough estimate, 
let us fi rst assume that the range of the strong interaction with 

about 10-15m [7] corresponds to the standard deviation nmax

of the primary BRW (connecting in our observable universe) 
and that the estimated "diameter" of about 8.8*1026 m of this 
universe [8] corresponds to the total extent or step number of 
the primary BRW. Then we get

 

268.8*10  m 418.8 *10 ;1510
241 83    8.8 *10 7.744 *10

nmax

nmax m

so nmax

 

 

             (15)

In view of this rough estimate, it is remarkable for 
comparison that the number of photons of the extragalactic 
background radiation (EBL) [9] was estimated to be 4*1084, 
thus having a similar order of magnitude as nmax (15). If we 
(roughly) distribute the number nmax to the estimated age of 
this universe of 13.8 * 109 years or 4.35 * 1017 seconds, we get 
the following step frequency fmax:

fmax = nmax / 4.35 * 1017 = 1.78·1066 /s               (16)

This frequency is very hi gh. In comparison, the speed of 
light c is slow. From one step to the next, the light covers only 
the following distance smin:

smin = c / fmax = 3 * 108 m/s / 1.78·1066 /s = 1,68 * 10-58 m          
                (17)

Thus, the range of the st rong interaction or the diameter 
of an atomic nucleus with 10-15 m is about 1043 times larger 
than smin. Obviously, the gradation smin is much too fi ne to be 
measurable, giving the impression of a "continuum".

So, even the rough calculation (15) leads to very high 
frequencies for which our perceptible time, the speed of light, 
and therefore also our maximum information speed is only 
slow. This means that the information of all physical (external) 
measurements comes clearly delayed and therefore more or 
less from the past, depending on the proper time (14). The 
number of possibilities can grow extremely fast along a rare 
(under more preconditions later starting) proper time because 
of the fast increase in fmax (16) of the global number of steps 
(15).

It should be noted at this point that the standard 
deviation of a simple BRW is a simplifi cation. For example, 
the superposition of two BRWs with opposite signs, starting 
from an original center k=0 as in Table 2, is plausible due to 
the conservation of energy. But also in this case (which also 
requires other renormalization) the resulting expansion and 
the distance of the extrema have similar magnitudes.

How can this now be fi tted into the framework of quantum 
mechanics?

3.3. First bridge to quantum mechanics

Especially in quantum mechanics, the "information" 
of measurement results is shown to be crucial for future 
measurement results - thus ultimately for physics. The 
experimental results thus prove that we need a precise 
information-theoretical approach. Also, quantum physical 
experiments are particularly suitable for analyzing the 
combinatorics of information, because the set of possible 
measurement results of quantum physical experiments and 
thus the domain of generated information are clearly defi ned 
and manageable.

In quantum mechanics, physical states [10] are described 
by complex-valued vectors. The column vectors are called Kets 
and the corresponding complex conjugate row vectors Bras. 
Eigenstates of the system are basis states. These are described 
in each case by orthonormal basis vectors. This can result in 
high-dimensional state vectors already in the microscopic 
quantum physical domain. In current approaches, continuous 
result sets are assumed for, among others, location and 
momentum, resulting in infi nite-dimensional state spaces 
containing all possible state vectors. In an (exact) information-
theoretic approach, this must be replaced by fi nite-dimensional 
spaces. However, their dimensionality resp. the number of 
possibilities can grow extremely fast along proper time and can 
be synchronized for information exchange within the global 
step number (15). Even the rough calculation (15) leads to very 
high frequencies for which our perceptible time, the speed of 
light, and therefore also our information speed are very slow. 
This means that the information on physical measurements 
mostly comes from a clear past. This illustrates that a lot can 
happen during the measurement.



166

https://www.peertechzpublications.org/journals/annals-of-mathematics-and-physics

Citation: Orthuber W (2023) All physical information is discretely connected from the beginning and all geometrical appearance is a delayed statistical consequence. 
Ann Math Phys 6(2): 159-172. DOI: https://dx.doi.org/10.17352/amp.000097

In (8), proper time was represented as the sum of return 
probabilities of a BRW. Each BRW up to the return in k=0 in line 
2n can be decomposed into 2 BRWs in succession, each up to 
line n. For such "outward and return paths" there are several 
possibilities per return. Thus we get

 
/2

2

/2

0 , 2 0(2 ,0)
n

k n

Q n k Q n


               (18)

Every progress of time is coupled with such return events 
according to (8). Progress of time is also coupled with every 
physical measurement. From this point of view, it is less 
surprising that the probability of every quantum mechanical 
measurement results from the product of a probability 
amplitude ("way there") with its complex conjugate ("way 
back") like in (18). Both are prerequisites for complete 
measurement which also implies time progress.

This view can also show a fi rst bridge to geometry as a 
statistical consequence:

3.4 About statistics and geometry

We  could consider a BRW from start to return (over positive 
k) as coupled with a mirrored BRW on the opposite side (over 
negative k) for reasons of symmetry. However, the exact 
information about the coupling is not necessarily available, 
perhaps only as an average value resulting from a conservation 
law. This may give the impression of a modifi ed probability 
distribution with 2 independent BRWs, one over k<0 to Q0(n-
1,-1) and one over k>0 to Q0(n-1,1). From there, the two 
seemingly independent BRWs each go to k=0 with probability 
1/2. The probability Q0AND(n, 0) for this is then:

 
22

0( 1, 1) 0( 1, 1)Q0AND n,0
2 2

0( ,0) 1 2 1     
2 2 n 2 n

Q n Q n

Q n
 

   


           

                          (19)

The meeting probability Q0AND(n, 0) of two simultaneously 
starting independent BRWs after n steps in their common 
starting point approaches 1/(2πn) for large n, which corresponds 
to the reciprocal of the circumference of a circle with radius n. 
This can show a relatively simple connection between statistics 
and geometry. If both BRWs start at the same time and are 
exactly mirrored (due to a conservation law for symmetry 
reasons), the probability of return is as simple as for a BRW, i.e. 
given by Q0(n, 0). If, on the other hand, the BRWs start later 
and decide seemingly independently of each other ("AND"-
conjunction, (19)), the probability that they meet after n steps 
at the starting point k=0 is the geometric probability Q0AND(n, 
0) and thus corresponds to the probability of meeting a segment 
of length 1 on a circle with radius n.

To get an idea of the order of magnitude in metric units, we 
remember that because of the slow speed of light compared to 
the global step frequency fmax (16), a lot can happen (1043 steps 
of the length smin (17) until the crossing of an atomic nucleus) 
until geometric (macroscopic) distances are measurable. There 
is always a delay to the perception of the geometric appearance, 

e.g., the circumference of the circle: we can then say, "The 
larger the macroscopic radius or distance n*smin of the circle, the 
more delayed is our perception of the circle, the more possibilities 
2πn*smin (for positioning) on the circle there are."

Even if this reasoning starts as a two-dimensional 
approach at fi rst (since a circle is a two-dimensional object), 
it fi ts the stepwise propagation of electromagnetic fi elds, 
which transport information, and in further propagation, steps 
include the 3rd dimension (cf. section 3.8).

Because of the uniform algorithm (3), (18) can be written 
analogously also for superpositions. There are further 
relationships, e.g.

   
/2

2

/2

1 , 2 1 2 1, 1 2(2 ,0) 
n

k n

Q n k Q n Q n


    
              (20)

The squares on the left side of equation (20) show no direct 
linear superposition. This equation holds because BRWs can 
be chained and because of (10) and (11). Further chaining is 
possible along time steps (8). 

Several opportunities for further research arise. For 
example, equations (18) and (20) have analogies to quantum 
mechanical calculations of integrals and sums over squares of 
probability amplitudes, respectively.

3.5 Bridges to quantum mechanics: Schrödin ger equa-
tion

For clarity, we assume here a non-relativistic particle in 
one dimension. The Schrödinger equation for this is [11]

   
2 2

2t,  x ( , ) t, x  
2
hih V t x

t m x
  

       
          (21)

Here (t, x) denotes the wave function or the quantum 
mechanical state and t and x are variables for location and time.

A function that yields a valid quantum mechanical 
probability amplitude as a function of location and time 
must also satisfy the Schrödinger equation. Therefore, the 
Schrödinger equation is a central tool of quantum mechanics.

However, this equation is also a differential equation on 
continuous sets of numbers and as such cannot be directly 
adopted in an information-theoretic approach. It must, in 
order to be compatible with 1.1, be translated into an equation 
with fi nite differences. This is indeed possible. To this end, 
according to (8), we identify the increase (by 1) in the number 
of steps n of the primary BRW (cf. Section 3.2) as the minimal 
condition for increase ∂t in time, and the change (by ±1) in the 
location coordinate k of the BRW as the minimal condition for a 
change ∂x in location coordinate. Application of the algorithm 
(3) yields

     0 1, 1 0 1, 1
0 2,

2

Q n k Q n k
Q n k

    
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                (22)

The left side of (22) represents a fi nite difference along the 
number of steps n corresponding to the derivative along the 
time ∂t on the left side of the Schrödinger equation (21) and the 
right side represents a 2nd-order fi nite difference along the 
location coordinate k corresponding to the 2nd derivative along 
the location coordinate ∂x on the right side of the Schrödinger 
equation (21).

Since the derivation (22) uses only the algorithm of the BRW 
(3), the same argumentation works also for all superpositions 
or linear combinations (5), of course also for superpositions 
with prefactors with opposite sign (due to physical conservation 
laws, see Q1-triangle, Table 2). Prefactors analogous to the 
Schrödinger equation are also necessary for fi nite differences 
when embedded in a larger multidimensional system. An 
analogy to the potential term V(t, x) in (21) becomes also 
necessary for fi nite differences (22) when embedded in a larger 
system. Thereby symmetries can become more apparent. For 
example, the potential of gravity may be a consequence of a 
conservation law, i.e., a global symmetry.

Validity at all superpositions can explain the universal 
validity of the Schrödinger equation, but ultimately also requires 
the synchronization of fi nite differences via a primary domain 
(cf. Section 3.7), which will be addressed in the discussion.

3.6 Bridges to quantum mechanics: (Matrix) Exponent ial 
function as binomial expansion

The complex exponential function is used as an algebraic 
tool in all areas of quantum mechanics. By its Taylor series 
expansion, we have also immediately a reference to familiar 
functions of geometry like sin(x) and cos(x). However, this 
infi nite time-independent series expansion does not fi t an 
(exact) information-theoretic approach. For this, we need an 
algebraic approach, whose branching depth and complexity 
increase discretely together with the physical time.

We have this approach in the steps of a BRW (8). The 
binomial coeffi cients (Table 1), which refl ect the number of 
path possibilities in the BRW, can also be used to approximate 
the exponential function. In fact, the exponential function 
can be replaced by a fi nite binomial expansion of arbitrary 
precision. Let , k  n,, 0k n x    . We defi ne:

   
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The right-hand side of (24) corresponds to the series 
expansion of the exponential function. So we get
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                (25)

The right-hand expressions in (24) and (25) should serve 
as a bridge to frequently used limits of calculus and also to 

geometric functions because of  cos  sin( )ixe x i x  . The 
binomial expansion (23) can approximate these with arbitrary 
accuracy, if "only" n becomes arbitrarily large. However, this 
can be done in a time-conformal way and thus in a reality-
conformal way, if we assume that the increase of time is 
proportional to the sum of probabilities of return events of 
a BRW (8), which are proportional to binomial coeffi cients. 
Therefore, the expression (23) can better show the real 
combinatorics. The considerations for calculating nmax in 
Section 3.2 and the estimation (15) show that such reality-
conforming n can become extremely large.

We initially assumed  x . However, this can be replaced 
and extended by matrices. Indeed, for illustrating important 
combinatorics, in particular multidimensional time-conformal 
combinatorics (cf. Section 3.8), matrices are more suitable than 
the commonly used complex numbers. In accordance with a 
time-conformal development starting from (8), (23) can also 
be defi ned for matrices:

   
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, ,   
! !

k
n A

bnk n k A
k n k n




 
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              (26)
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            (27)

Here A is a square matrix and I is the unit m atrix wi th the 
same dimensionality as A. Since the unit matrix I commutes 
with A, the series expansion (27) is uniquely defi ned.

The exponential function is also defi ned for matrices but 
is approximated by its Taylor series in a diff erent order. Here 
it is recalled that the complex exponential function and also 
the matrix exponential function [12] can be replaced by a fi nite 
binomial expansion (27) and that this can provide completely 
new insights into the time-conformal combinatorial nature of 
physical processes.
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It should be noted here that in the defi nition of the function 
bn(n, x) in (27), another subdivision can also be chosen, such 
as:

  1 1
, : 1

2 2

nn
x x

bn n x
n n

    
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             (28)
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            (29)

We can consider the left-hand side of (28)(29) as the 
decided (past) part of a BRW, and the right-hand side of (28)
(29) as the undecided (future) part.

For large n, such as nmax, the right-hand sides of (28) and 
(29) result approximately in a symmetric distribution of the 
binomial coeffi cients as in a symmetric BRW (2). To replace 
the "approximately" with "exactly", there are even more 
combinatorial details to consider. Instead of e.g. (29) we could 
write for the exact consideration of a conservation law

1 1

2 2

n n
A A A AnI I I I I
n n n n
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Due to the quantization and conservation of angular 
momentum, it seems interesting to use for A, for example, 
a 3D rotation matrix (π/2 rotation about one of the 3 spatial 
directions, see also Table 3) and to investigate the combinatorics 
in more detail.

3.7 The primary domain is a prerequisite for the time-or-
dered exc hange of energy and information and for main-
taining the conservation laws

The term "primary domain" introduced above denotes 
the most upstream minimal common set of possibilities 
in this (perceptible or measurable) universe. Since a set of 

possibilities (domain) can only be defi ned under access to 
existing information, i.e. information from the past, the access 
to domains of information occurs the more frequently, the 
further upstream (in the past) these were defi ned - according 
to 1.1 as a selection from a (further upstream) domain. Thus, 
the upstream "primary domain" is maximally frequently 
used, but its size is minimal. It must be suffi cient only for the 
determinability of an order.

An approach for further consideration can be given: 
Progressive time implies energy fl ow and measurable change 
(of information), which in turn requires access to the primary 
domain. The access or reference to the primary domain 
(ordered or "synchronized" along the progressing time) is thus 
a precondition for our common ordered time and necessary at 
every energy fl ow. Thus, the primary domain can be described 
in more detail.

For this, we examine the basics for the exchange of 
information between distinguishable localizations. We exchange 
information "outside" as free energy. Free energy "expresses" 
itself per proper time by an impulse to the "outside". A precise 
information-theoretical consideration shows that this sign of 
the impulse requires a synchronization along the increase of 
the time. This concerns the electromagnetic quanta (photons) 
which are our elementary information carriers. Their 
propagation direction decides the direction of the information 
transport. There is actually a decisive degree of freedom for 
this in the defi nition of the propagation vector of the energy, 
thus in the defi nition of the Poynting vector [13] Se.

 1
   

0
S E Be


                 (30)

Here B denotes the magnetic fl ux density, μ0 the fi eld 
constant, and E the electric fi eld strength. The cross product E 
x B defi nes a vector perpendicular to E and B, whose direction 
resp. sign depends on the order of the components E1, E2, E3 of E 
and B1, B2, B3 of B according to

n  k  -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6  
 0       Ez         
        dx    -dy         
 1      By   Bx        
       -dz    dx    -dy    dz        
 2     Ex   Ez   Ey       
      dy    -dz    dx    -dy    dz   -dx       
 3    Bz   By   Bx   Bz      
    -dx    dy    -dz    dx    -dy    dz   -dx    dy      
 4   Ey   Ex   Ez   Ey   Ex     
    dz   -dx    dy    -dz    dx   - dy    dz   -dx    dy   -dz     
 5  Bx   Bz   By   Bx   Bz   By    
  -dy    dz   -dx    dy    -dz    dx    -dy    dz   -dx    dy   -dz    dx    
 6 Ez   Ey   Ex   Ez   Ey   Ex   Ez   

Table 3: Illustration of the combinatorics of discrete Maxwell Vacuum Equations (34) and (35) with time reference. The derivatives d/dx, d/dy, d/dz are abbreviated with 
dx, dy, dz. These are shown here simplifi ed as steps ordered along one dimension k.
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where , ,1 2 3e e e  
 denote the base unit vectors of a right-

handed Cartesian coordinate system and ijk denotes the Levi-
Civita symbol. It is

 
 

 

1,  , ,       (1, 2, 3)

   1,  , ,       (1, 2, 3)

0,       , ,        

if i j k is an even permutation of

if i j k is an odd permutation ofijk
if if at least two indices i j k are equal
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 
 
 
  

    (32)

Each of the 3 indices i, j, k represents one of the 3 orthogonal 

directions , ,1 2 3e e e  
. How should physical systems localized 

at diff erent locations immediately and reproducibly "know" (as 
a common past) whether the permutation of the 3 orthogonal 
directions is "even" or "odd"? This question is decisive for the 
propagation direction of the energy and therefore also decisive 
for all information that we exchange!

In (31) and (32) the sign of ijk determines the sign of the 
propagation direction of each energy exchange. This speaks 
for the fact that the selection of one of 2 possible orders of 
a common set of 3 possibilities takes place at access to the 
primary domain of our universe.

It is obvious that the sign of the energy fl ow is important 
to guarantee the (basic) conservation law of energy. There are 
further conservation laws in physics, which must be considered. 
For the guarantee of the conservation laws, information from 
the respective past must be available. How can this be stored, 
and how can it be guaranteed that the access can take place 
suffi ciently fast?

One possibility is the exactly antisymmetric subsequent 
start of a new BRW within previously started BRWs as illustrated 
in Table 2 This respects the principle of "neutrality of subsequent 
changes" since the total sum (from the previous point of view) is 
preserved. This means that after each step in the primary BRW, 
the total sum over the conserved quantity must be equal to 0. A 
BRW with an antisymmetric start satisfi es this condition. The 

example in Table 2 illustrates this; it is  /2 1 , 2 0/2
n Q n kk n 

. According to this, the information is most quickly retrievable 
in the center (middle) between the starting points, i.e. in k=0 
in Table 2. In k≠0 it appears as asymmetry.

We need the consequent information-theoretical approach 
with such pre-information for the exact synchronization 
at every exchange of energy. This must be guaranteed from 
the beginning of time. In the framework of the primary 
conservation law of energy, it is plausible that the global total 
sum of probability amplitudes over each row n is equal to 0, 
as in Table 2 for Q1(n, k). Then we could "simply" assume 
that one of the two sides k>0 or k<0 was chosen in an initial 
decision. This initial decision has maximum priority because 
starting from "rest mass" it defi nes the propagation direction 
of "energy" per time progress resp. increase in the number 

of steps nmax. The "probability" or access frequency in the 
context of a global calculation is therefore maximal. (This fi ts 
with the fi nding that the earlier the domain of information is 
learned, the faster it is available on average later).

Approaches to further research:

Since it is about the earliest decision or symmetry breaking 
for our universe, this could be decisive in the context of a 
maximum measurable symmetry. In the context of the CPT 
symmetry this could decide about the sign of the charge (and 
therefore predominance of matter over antimatter) at usual 
time progress resp. enlargement of the maximum number of 
steps.

The choice of a side e.g. k>0 and the prefactor (10) in the 
Q1 distribution could cause geometrical asymmetries and 
have further effects. It could be expressed as potential, also 
macroscopically, for example as gravitational potential.

3.8 Bridge to electromagnetism, Maxwell's equations, 
perspective

In section  3.7 we already noticed that the electromagnetic 
laws play a decisive role in the propagation direction of our 
basal information carriers resp. photons. To make these laws 
compatible with the basal defi nition of information 1.1, it is 
fi rst necessary to discretize them. We start with the Maxwell 
Vacuum Equations with a time reference. It holds [14]

1 1
    

E B
B and E

c t c t

 
      

 
              (33)

Here E denotes the electric fi eld vector with components Ex, 
Ey, Ez, and B the magnetic fi eld vector with components Bx, 
By, Bz, and c the speed of light, and t the time. For clarifi cation 
of combinatorics, we use a notation without units. Written out 
in components we get from (33) with c=1:

    
E Bz By Bx Bz By Bx

x y z
t y z z x x y

      
     

      

    
          (34)

     
B Ez Ey Ex Ez Ey Ex

x y z
t y z z x x y

      
        

      

    
        

 

                          (35)

Under suitable conditions, we can consider the expressions 
in the parentheses each as 2 alternatives of a BRW and thus 
discretize them. This becomes clearer in the form of a table 
(Table 3).

As with a BRW, the increase in time dt is associated with the 
increase in the number of steps n. The derivatives d/dx, d/dy, 
d/dz are linear operators. This can be transferred to the basic 
algorithm of the general BRW. We already noticed that the ank 
and bnk in (4) can be matrices or linear operators. If conditions 
are given that allow ordering along one dimension, a clear 
transfer to a BRW along one dimension k is possible as in Table 
3. Different initial values lead to different further development, 
also with different effects of renormalization.
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The alternation of dimensions in Table 3 (starting from Ez, 
for example, between x and y) implies that we could get closer 
to the combinatorics of the primary BRW (section 3.7) if we 
consider its steps as alternating in 2 independent directions, 
similar to a 2D random walk on a lattice [15]. This and further 
multidimensional considerations could be the subject of further 
research. Computer simulations could also help here, including 
considerations of energy propagation resp. the Poynting vector 
(section 3.7).

4. Discussion

The introduction fi rst points out the need for a precise 
defi niti on of information and then introduces defi nition 1.1, 
which is the focus of this article. It is mentioned that the 
digital application 1.2 of defi nition 1.1 has great potential, 
as this enables the systematic implementation of more and 
more precisely comparable and globally searchable digital 
information. This has been addressed in previous publications 
[3]. In this context, it was mentioned that the defi nition 1.1 also 
has fundamental consequences for physics.

The preparation of a physical experiment determines the set 
(domain) of its possible results, and the result of any physical 
experiment is information, i.e. a selection from the previously 
determined set of possibilities or domain. This just corresponds 
to the defi nition 1.1 of information. Thus, fundamental physics 
is actually the fi rst science about information and should 
consistently apply defi nition 1.1 of information.

There is a lot of literature on information-theoretic 
approaches, also in physics. However, apart from own literature 
[3], there seem to be no other publications with an (exact) 
information-theoretic approach resulting from defi nition 1.1. 
In the last publication [3], which delves into the application 
of 1.1 in computer science, it has already been pointed out in 
Section 4.7 that the application of 1.1 in physics would also be 
an important topic for further research. This article is intended 
to provide suggestions in this regard.

The domain of information presupposed in 1.1 must always 
be (ordered and) reproducibly known before information 
exchange. That means it is fi nite, because after a reproducible 
(thus also fi nite) sequence of elementary steps each element 
of the domain must have the same meaning for all (represent 
identical information). Each element of the domain can only be 
defi ned with the help of information, which means selection 
from a previously defi ned domain. So we need also a discrete 
(and in the direction of the past even fi nite) concept to time 
and proper time.

In earlier publications [5] such a concept was already 
presented, starting from the relativistic time dilation, which 
can be represented as the sum (8) of the return probabilities 
of a Bernoulli Radom Walk resp. "BRW". From this, we can 
conclude that in the steps of a (modifi ed, superimposed) 
random walk, current information and thereby the domain 
of later information are defi ned. However, this still needs 
to be connected (step by step) with current approaches and 
bridges need to be shown in particular to quantum mechanics. 
In connection with this, it is pointed out that also linear 
combinations or superpositions (5) of BRWs are possible as 

long as the elementary discrete steps are synchronized resp. 
"connected".

Since the consistent application of the elementary 
defi nition of information 1.1 (among other things because of the 
necessary discretization) means in the end a deep intervention 
into current thought buildings, the question arises whether 
this is necessary. Perhaps one would like to do without a clear 
defi nition of "information" because this does not fi t into the 
present concept. Of course, nobody can be forced to do so, but 
this article can then clarify relevant limits and contradictions 
of common thought buildings and thus indirectly help to save 
time. We can save time, for example, if we consider the "Big 
Bang model" only as a way to get an overview of the fi rst 
orders of magnitude (measurable here), but of course not as a 
starting point for the explanation of (measurable information 
of) reality.

Then we can also question whether we want to start the 
thought building at all with a clear defi nition of information, 
which is elementary (exact) and therefore starts as usual in 
mathematics with elementary terms of set theory. If not, what 
is the alternative? The experience showed again and again that 
the application of ill-defi ned or even undefi ned terms does not 
help in the end.

So the question still arises whether there is an alternative 
exact defi nition of information that differs decisively from 1.1.

The selection of elements from a set is elementary. Thereby 
it is quite possible to refi ne and extend details, especially the 
notion of "reproducible knowledge" (of the elements) of a set 
of possibilities. This requires a discrete concept of time and 
proper time, since "knowledge" is possible only for parts of 
the past. Making such a concept possible is just one of the 
objectives of this article.

The concept of time and proper time used here got its 
initial impulse from the power series development of the 
function (8) for relativistic time dilation. It was shown that 
this can be represented as the sum of the return probabilities 
of a Bernoulli Random Walk (BRW) [5]. The approach of a BRW 
allows a discrete representation of discrete sets of possibilities 
for information, which are always fi nite at a given time or a 
number of steps and therefore compatible with our defi nition 
of information 1.1. In Section 2 (Material and Method) it is 
also mentioned that the symmetric case of the BRW (p=1/2 for 
both sides) is particularly interesting (also for the inclusion of 
conservation laws). This important case occurs regularly in the 
ultrarelativistic case of the speed of light, i.e. the elementary 
electromagnetic propagation speed of information. The 
expression (7) results in this case in "infi nity" and is therefore 
not usable. However, the approach to proper time via series 
expansion (8) as a sum of return probabilities of a symmetric 
BRW remains usable also in the ultrarelativistic case and shows 
in particular combinatorial details. The BRW approach, with 
additional physically relevant modifi cations, such as linear 
combinations or superpositions (e.g., Table 2) and discrete 
derivatives (9) of BRWs are therefore discussed in more depth 
and the fi rst results are shown (Section 3).
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First, a direct relationship (14) between eigentime and the 
number of steps of a symmetric BRW is shown. The symmetric 
BRW also corresponds to the "no prior information" case, 
since no direction is preferred. In section 3.2, this is applied to 
a global calculation. Consequently starting from 1.1, there must 
be an initially defi ned primary domain of information, whose 
knowledge is a prerequisite for any subsequent exchange of 
information in our universe. So to say, the "direction of time" 
was defi ned in connection with the propagation direction of 
energy per time increase (see section 3.7). This also means that 
the primary domain of information was defi ned in the fi rst 
steps of a primary (comprehensive, thus maximum) BRW in 
our universe. This maximum connecting BRW is necessary for 
the guarantee of the conservation of energy, (cf. section 3.7) 
and for the synchronization of elementary fi nite differences (3)
(4) and their possible superpositions (5).

For the sake of clarity, in section 3.2 we fi rst made a rough 
estimate of the maximum number of steps nmax, since the 

standard deviation of the maximal BRW is nmax  and within 
a few standard deviations around the mean most steps of 
a BRW occur. Within this rough estimate, we fi rst chose the 
range of the strong interaction as a measure of the standard 

deviation nmax  and the maximum measurable distance (i.e., 
the estimated extent of the measurable universe) as a measure 
of the extent nmax of the primary BRW. Using (15), we obtained 

83 847.744 *10 10nmax   . Rounding is more than justifi ed 
because of this rough estimate. Using the range of the weak 
interaction would have resulted in an even larger value.

In any case, this rough estimate calculation already shows 
that the gradation of the discrete representation is too fi ne to be 
measurable. So it would be a fundamental mistake to conclude 
from missing measurability of the gradation that reality is 
continuous (like e.g. the "real numbers"). The information-
theoretical approach 1.1 makes clear that for an information-
theoretical and therefore exact description of reality we have to 
work from the beginning with discrete sets of numbers, which 
moreover have to be fi nite within fi nite time.

An exact information-theoretical approach naturally 
concerns quantum mechanics, where just the emphasis is put 
on computational models to clear basal physical experiments. 
Equation (18) illustrates that in the BRW approach, every 
progress of time can be decomposed into sums over 
concatenated outward and return paths. This shows fi rst 
analogies to quantum mechanics, where the probability of any 
measurement result is the product of a probability amplitude 
("outward path") with its complex conjugate probability 
amplitude ("return path").

Moreover, the concatenation of two BRWs leads to typical 
probabilities (19) of the geometric view. This shows a possibility, 
how in the context of further research the geometrical 
appearance can be derived as a statistical consequence (which 
occurs delayed due to limited information speed).

Section 3.5 shows a way to discretize the Schrödinger 
equation, here choosing the non-relativistic one-dimensional 
form. Despite this simplifi cation, the analogies of derivatives 
of the quantum mechanical state (t, x) to discrete fi nite 
differences of Q0(n, k) shown are remarkable, since the 
Schrödinger equation has central importance in quantum 
mechanics. The algorithm of the symmetric BRW (3) is also 
suffi cient for the argument (22). Essential is "only" the 
uniform defi nition resp. synchronization of n and k for (3) and 
for superposition (5). The synchronization of fi nite differences 
is necessary for the "fi nite" Schrödinger equation. Again, 
from an information-theoretic point of view, this requires 
the embedding of the BRWs within a maximal primary BRW 
with a maximal number of rows (e.g., nmax in (15)). Thus, 
the universal validity of the Schrödinger equation is another 
indication of this assumption.

The exponential function also plays an important role in 
quantum mechanical calculations, e.g. as part of quantum 
mechanical state functions. This function can be represented 
as a binomial expansion (23), if "only" n becomes arbitrarily 
large. This can be done in conformity with time [5] and thus 
in conformity with reality (cf. also (8)). In this case, for large 
n the right-hand sides of (28) and (29) show approximately 
a symmetric distribution of the binomial coeffi cients as in a 
symmetric BRW (2).

Section 3.7 now deals with the basal question of the 
minimum prior information necessary (in our universe) for 
elementary information exchange resp. exchange of energy 
quanta or photons. For this, indeed, an important degree of 
freedom can be found: The order of the 3 space dimensions 
decides the sign of the Poynting vector (30) and thus about the 
direction of the elementary energy transport. The fact that in 
(31) and (32) the sign of ijk determines the sign of the direction 
of propagation of any energy exchange speaks in favor of the 
hypothesis that the selection of one of 2 possible orders of a set 
of 3 possibilities takes place at access to the primary domain of 
our universe. We have to know this order reproducibly together 
as necessary pre-information at every information exchange 
or energy exchange (per common increase of time).

A prerequisite for this (also for the comprehensive validity 
of the Schrödinger equation, cf. section 3.5) is ultimately 
the basal discrete synchronization resp. connection of fi nite 
differences as described in (5). This and other results (sections 
3.4, 3.6, 3.7) led to the title of this article.

Finally, section 3.8 describes a bridge (33) to 
electromagnetism. Maxwell's equations are particularly 
interesting because they show, with reference to time, the 
combinatorics of energy and information propagation in all 
measurable dimensions. However, for compatibility with the 
defi nition 1.1 of information, we need a discrete representation 
of the electromagnetic laws. Starting from the Maxwell 
Vacuum Equations (34)(35) written out without units, Table 
3 shows the resulting combinatorics spread out along one 
dimension. Possibilities for further research are addressed, and 
multidimensional considerations and computer simulations 
may also be helpful.
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5. Some hints for interpretation

A philosophical discussion of the defi nition 1.1 of information 
and the resulting consequences is beyond the scope of this 
article. However, some remarks on the interpretation are 
appropriate.

We are all as living beings locally separated, but ultimately 
part of a whole because we can exchange information, so 
ultimately together we must all have the same primary domain 
of information, which we must know more or less unconsciously. 
This connects all information. Access to the primary domain 
of information is necessary and the determined order (32) is 
crucial for the control of every energy fl ow, see section 3.7. We 
can consider decisions as the causes of information because 
we have to decide fi rst before the information about the 
decision can be expressed and perceived elsewhere. The (in this 
reference frame or universe) primary (initial) decision defi ning 
the primary domain ("initial symmetry breaking") controls the 
further energy fl ow (per time increase) with maximum effect.

This can be done, for example, by choosing a side as shown in 
Table 2, i.e., by choosing one of 2 BRWs with opposite signs (because 
of the exact conservation law of energy - which implies that our 
contribution is important after all).

The initial decision defi nes this information with maximum 
effect for the further long-term common future for all life 
which exchanges information (as energy quanta) later.

But what does this mean for living beings, whose conscious 
memory usually begins much later? How shall we decide?

Since contradictory information fi nally extinguishes itself 
(due to the same primary domain and exact conservation of 
energy), it is certainly advisable to avoid contradictions to 
the common initial decision (leading into the future) and to 
decide to the best of our knowledge in such a way that our own 
decisions also lead into a common future in the long run and 
do not contradict the common future. To this end, we can ask 
ourselves:

Which decisions would future generations want from us?

6. Conclusion

Since the result of any physical, well-defi ned experiment 
is information in the form of a selection from the set of 
possible experimental results, defi nition 1.1 of information is 
also relevant to physics. A more detailed analysis shows that 
substantial consequences for theoretical physics follow from 
this:

The set of possibilities resp. the domain of information must 
be reproducibly known so that the selection from the domain 
(as "information") is communicable and reproducible. From 
this follows that within fi nite time the domain of information 
can only be fi nite.

Mathematical approaches to theoretical physics that use 
time-independent infi nite sets are therefore unsuitable for an 
information-theoretic approach 1.1.

Starting from the series expansion of time dilation, it 
is shown that time is proportional to the sum of the return 
probabilities of a Bernoulli Random Walk or "BRW".

The BRW approach is shown to be suitable for an information 
theoretic approach in which the domain of information is 
always discrete and only increases together with time.

Starting from the BRW approach, several bridges can be 
formed to current mathematical approaches, e.g., to the use 
of linear operators, the Schrödinger equation, and the (matrix) 
exponential function in quantum mechanics. Bridges from 
BRW statistics to geometry are also possible.

The laws of electrodynamics give clues in discrete form 
to basic discrete combinatorics. They show 2 possibilities 
for the calculation of the sign of the Poynting vector (i.e. for 
the direction of the energy fl ow). From this, conclusions can 
be drawn to the structure of the common primary domain 
of information, which is necessary for the defi nition and 
connection of later defi ned (domains of) information. A fi nal 
illustrative presentation of the combinatorics of Maxwell's 
equations is intended to give suggestions for further research.
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