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Abstract

We consider two inertial frames S and S  and suppose that frame S  moves, for simplicity, in a single 
direction: the X -direction of frame S with a constant velocity v as measured in frame S.

Using homogeneity of space and time we derive a modifi ed Lorentz Transformation (LT) between two 
inertial reference frames without using the second postulate of Einstein, i.e., we do not assume the invariant 
speed of light (in vacuum) under LT.

Roughly speaking we suppose: (H) Any clock which is at rest in its frame measures a small increment 
of time by some factor s=s(v). As a corollary of relativity theory (H) holds with Lorentz factor 1/γ. For s=1 we 
get the Galilean transformation of Newtonian physics, which assumes an absolute space and time. We also 
consider the relation between absolute space and Special Relativity Theory, thereafter STR.

It seems here that we need a physical explanation for (H). 

We introduce Postulate 3. The two-way speed of light in x and z -directions of the frame S are c 
and outline derivation of (LT) in this setting. Note that Postulate 3 is a weaker assumption than Einstein's 
second postulate. 
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Introduction

The work is in progress and in this introductory paper, we 
will outline a mathematical model motivated by the special 
theory. We hope that work in this direction can contribute to a 
better understanding of Special Relativity Theory (STR).

The reader should have in mind that Physics is not 
Mathematics, and in Physics notions are not always defi ned 
rigorously as in Mathematics. Physics works by making 
mathematical models and judges them by how well they 
describe reality1. Mathematical models have an independent 
interest in mathematics and can help to clarify some 
phenomena in reality, and experimental verifi cation of claims 
is important for physics [1].

Most physicists agree with Relativity Theory (RT) and some 
of them consider that it is the greatest triumph of the human 
mind.

1According to legend, someone asked Einstein what is time, and he answered, "It's 
what a clock measures."

Some scientists criticize the Foundations of the Relativity 
Theory, the lack of logical and physical grounding for 
fundamental concepts in the special and general relativity 
theory, such as time, space, the relativity of simultaneity, the 
second postulate, etc.

Bearing these criticisms in mind, we try to make a 
mathematical model motivated by the special theory of relativity 
(STR), in particular without using the second postulate of 
Einstein, and to consider it. The fi rst principle of relativity 
(without the second) along with homogeneity of space and time 
and isotropy of space naturally gives rise to two possibilities, 
either we have Galilean transformation where space and time 
are absolute, or general Lorentz Transformation (LT) which 
includes Lorentz Transformation with a boost invariant speed 
c as the upper limit of all speeds. Most physicists believe that 
reality corresponds to LT, but pure mathematics from our 
assumption cannot decide that. Some promoters of the theory 
of relativity think probably in a metaphorical sense that Light 
has supernatural properties (and use the name ''god particle''); 
e.g. as far as I know for the sound the second postulate does 
not matter.
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Although most physicists accept the theory of relativity, 
there is a signifi cant number of scientists who are critics of this 
theory [2-9]. In addition to the mentioned works, our research 
is also motivated by several works [10-18] that do not assume 
the second postulate. Bearing these papers in mind, we try to 
make a mathematical model motivated by the special theory 
of relativity (STR) which does not rely on the second postulate 
of Einstein. The purpose of our work is to clarify the situation 
from a mathematical point of view and develop a theory based 
on hypothesis (H), which we call time dilation and which is 
a substitute for the second postulate. As a corollary of our 
approach, we show that the two-way speed of light is invariant 
in all inertial frames.

First, we give a brief overview of the above-mentioned 
papers. Recall the usual derivation of (LT) (e.g., Einstein's 
original work, see also [5,16,19-24]) is based on the second 
postulate (the invariance of the speed of light). However, it turns 
out that the starting point can be (as is described, for example, 
in the second volume of the Course of Theoretical Physics by 
Landau and Lifshitz [25]), the assumption: that the infl uence 
that one particle exerts on another can not be transmitted 
instantaneously. Hence, some researchers conclude that there 
exists a theoretical maximal speed of information transmission 
that must be invariant, and it turns out that this speed 
coincides with the speed of light in a vacuum. Newton called 
the idea of action at a distance philosophically "absurd", and 
considered that gravity had to be transmitted instantaneously 
by some agent (the thing that takes an active role or produces 
a specifi ed effect).

In a 1964 paper [17], Zeeman considered the causality-
preserving property: A bijection, f , of space-time is said to be 
causal if, for all points x,y in space-time, y-x is time-like and 
forward-pointing if and only if f(y)-f(x) is also time-like and 
forward-pointing. This condition is weaker in a mathematical 
sense than the second postulate (the invariance of the speed of 
light) but it assures that the coordinate transformations are the 
Lorentz transformations. Goldstein obtained a similar result 
using inertiality (the preservation of time-like lines) [18].

Guerra and Abreu considered questions of absolute space 
and relativity [11]. In particular, they assume that there is one 
frame where the one-way speed of light in a vacuum is the 
same in all directions of space and equal to c. This frame can be 
identifi ed with the rest frame, and it is shown that this frame is 
unique. They have denoted this rest frame as Einstein’s frame.

They show that the meaning of the Principle of Relativity 
is not incompatible with the existence of a preferred, absolute, 
frame. Further, they establish that the one-way speed of 
light in a vacuum is not c in moving inertial frames (the two-
way speed of light of course is) and simultaneity is absolute, 
contrary to what results in Einstein's relativity. The general 
expressions for the transformation of coordinates between 
inertial frames are obtained. Therefore we believe that it makes 
sense to consider models that modify the second postulate 
and that in the future there will be new theories that better 
approximate reality.

Our consideration is concerned with the abstract notion 
of time. We suppose time measuring devices at every point 
of a frame that read ''time'' as scalar which has properties 
of real numbers. In one part of the manuscript, we suppose 
homogeneity of space and time without Postulate 2, and in the 
other part we consider some result of STR's supposed Postulate 
2.

In [13], Datta presents a new derivation of rotation-free 
Lorentz Transformation (LT) between two inertial reference 
frames without using the second postulate of Einstein, i.e., 
he does not assume the invariant speed of light (in vacuum) 
under LT. He fi nds a general transformation rule between 
two inertial frames where a speed, invariant under that 
transformation, arises naturally. This idea fi rst came into light 
by a mathematician Ignatowski [14] around 1910. For additional 
literature on the subject, we refer to [13]. Therefore, the 
principle of relativity along with homogeneity of space and time 
and isotropy of space naturally gives rise to two possibilities, 
either we have Galilean transformation where space and time 
are absolute, or we have Lorentz Transformation with a boost 
invariant speed c as the upper limit of all speeds. According 
to Datta, most physicists believe (Nature works in accordance 
with LT) is the second possibility. It has interesting corollaries 
and it happens that c is the speed of an Electromagnetic wave 
in a vacuum. Our consideration is also based on the validity 
of velocity reciprocity, see [16]. Velocity reciprocity means 
that the velocity of an inertial frame S with respect to another 
inertial reference frame S  is the opposite of the velocity of S  
with respect to S.

De inition and background

Re ference frames and relative motion

Reference frames play a crucial role in relativity theory. 
The term reference frame as used here is an observational 
perspective in space that is not undergoing any change in 
motion (acceleration) (so, at rest or constant velocity), from 
which a position can be measured along 3 spatial axes say x,y,z. 
In addition, a reference frame has the ability to determine 
measurements of the time t of events using a "clock" (any 
reference device with uniform periodicity).

An event is an occurrence that can be assigned a single 
unique moment and location in space relative to a reference 
frame: it is a "point" in spacetime (x,y,z,t). Since the speed 
of light is constant in relativity irrespective of the reference 
frame, pulses of light can be used to unambiguously measure 
distances and refer back to the times that events occurred to 
the clock, even though light takes time to reach the clock after 
the event has transpired.

For example, the explosion of a fi recracker may be 
considered to be an "event". We can completely specify an 
event by its four spacetime coordinates: The time of occurrence 
and its 3-dimensional spatial location defi ne a reference point. 
Let's call this a reference frame S. An event is something that 
happens at a certain point in spacetime, or more generally, 
the point in spacetime itself. In any inertial frame, an event 
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is specifi ed by a time coordinate t or sometimes ct and a set 
of Cartesian coordinates x,y,z to specify position in space in 
that frame. We use notation a = (t,x,y,z) and '=( , , , )t x y z   a  . 
Subscripts label individual events.

Sta ndard confi guration

To gain insight into how the spacetime coordinates 
measured by observers in different reference frames compare 
with each other, it is useful to work with a simplifi ed setup 
with frames in a standard confi guration. With care, this allows 
mathematical simplifi cation without loss of generality in the 
conclusions that are reached. In Figure 1 below, two Galilean 
reference frames (i.e., conventional 3-space frames) are 
displayed in relative motion. Frame S belongs to a fi rst observer 
O, and frame S  belongs to a second observer O . The x,y,z axes 
of frame S are oriented parallel to the respective primed axes 
of frame S . The frame S  moves, for simplicity, in a single 
direction: the x-direction of the frame S with a constant 
velocity v as measured in the frame S. The origins of frames S 
and S  are coincident when time t=0 for frame S and =0t  for 
frame S .

Since there is no absolute reference frame in relativity 
theory, the concept of "moving" doesn't strictly exist, as 
everything may be moving with respect to some other reference 
frame. Instead, any two frames that move at the same speed in 
the same direction are said to be comoving. Therefore, S and S  
are not comoving.

By e we denote euclidean distance in R3.

Einstein sy nchronisation (or Poincaré-Einstein syn-
chronisation)

Throughout this paper we suppose that clocks in any 
inertial frames satisfy the hypothesis of continuity of time 
(HCT): For every >0  there is >0 such that if e(A,B)< and a 
light signal is sent at time 1 from clock 1 at A to B and it arrives 
at time 2 at B then 2 1| |<   .

Einstein synchronization (or Poincaré-Einstein 
synchronization) is a convention for synchronizing clocks in 
inertial frames at different places by means of signal exchanges. 
This synchronization method was used by telegraphers in the 
middle 19th century but was applied to light signals by Henri 
Poincaré and Albert Einstein, who recognized its fundamental 
role in relativity theory. Its principal value is for clocks within 
a single inertial frame.

Consider synchronisation in an inertial frame S. According 

to Albert Einstein's prescription from 1905, a light signal is sent 
at a time 1 from clock 1 at A to clock 2 at B and immediately 
back, e.g. by means of a mirror. Its arrival time back at clock 1 
is 2. This synchronisation convention sets clock 2 so that the 
time 3 of signal refl ection is defi ned to be

1 1
3 1 2 1 1 22 2= ( )= ( ).       

The same synchronisation is achieved by transporting 
a third clock from clock 1 to clock 2 "slowly" (that is, 
considering the limit as the transport velocity goes to zero). 
The literature discusses many other thought experiments for 
clock synchronisation giving the same result.

The problem is whether this synchronisation does succeed 
in assigning a time label to any event in a consistent way.

As far as we know most physicists do not accept attempts to 
negate the conventionality of this synchronisation. 

Defi nition 1: Consider an inertial frame S. Suppose that a 
light signal is sent at a time 1 from clock CA at A to clock CB at B and 
immediately back, e.g. by means of a mirror, and that its arrival 
time back at clock CA is 2 . If 

2 1 =2 ( , ) /e A B c  , where e denotes 
Euclidean distance, we say that clock CA and CB are in the average 
two-way synchronisation. If clocks in an inertial frame S satisfy the 
Hypothesis of Continuity of Time (HCT) and any two clocks in S are in 
the average two-way synchronisation, we say that clocks in S satisfy 
the two-way synchronisation condition. 

From a mathematical point of view, we think that this issue 
deserves further consideration. In particular let us direct the 
reader to the work Malament David B [26], where a symmetrical 
relation of causal connectability is used.

For our purposes the following defi nition is convenient

Defi nition 2: Let S be reference frame with the origin O. We fl ash 
light from O at moment 0(when the clock there shows time 0) and 
when a fl ash of light reaches the clock at M, it begins running. In this 
setting, we say that clocks in S are synchronized in a standard way 
with respect to the origin. 

Question 1: Suppose that frames S and S  are in a standard 
confi guration and clocks in S are synchronized with respect to the 
clock Co at the origin O (here we use that the speed of light is c in S 
between O and arbitrary point M). Let = xt t   is time of clock OC   when 

O  is at position x in S and t=tx is time of clock Cx. It seems that t  is 
defi ned without use Postulate 2 (i.e. that the speed of light is c in S
). Is =t t   in this setting? 

Using notation in the above question, by Homogeneity of 

space and time, we fi nd 
2 1 2 1

= ( )x x x xt t t t    and therefore =t t

. Let the rod R of length l  is at rest in S . Then the length l of 
the rod R in S is independent of the position of the beginning 
point of the rod. If two rods of length 1l  and 2l  are at rest in S

, then 2 1 2 1/ = /l l l l  . Hence =l al  and therefore =x ax vt  . Note 
that in STR 1= =a    .

In general, we can ask: 

Question 2: Let S and S  be frames in standard confi guration 
Figure 1: 
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with reference devices in S and S  with uniform periodicity which 
measure ''time'' and consider some signal which is independent of 
frames. Are there devices that measure the same speed of signal in 
both frames?

STR is based on two postulates:

Postulate 1: The laws of physics are invariant (identical) 
in all inertial frames of reference (that is, frames of reference 
with no acceleration).

Postulate 2: The speed of light in a vacuum is the same for 
all observers, regardless of the motion of the light source or 
observer.

Let 
2 2

1=
1 /v c




 and 2 2= 1 /inv v c  . In STR the Lorentz 

transformation for frames in standard confi guration can be 
shown to be (see for example [13,19,25,27,28] and literature 
cited there):

If an observer in S records an event t,x,y,z, then an observer 
in S records the same event with coordinates , , ,t x y z     and we 
have 

2
= ,vxt t

c
    
 

 (2.1)

 = ,x x vt   (2.2)

= ,y y  (2.3)

= ,z z  (2.4)

Where v is the relative velocity between frames in the 
x-direction, c is the speed of light, and

2

2

1=

1 v
c





is the Lorentz factor.

The homogeneity of space and time

Through  this paper (if we do not state otherwise) if we refer 
to two frames S and S  in relative motion v we suppose that:

(H0): S and S  are frames in standard confi guration.

In particular, it means that the frame S  moves, for 
simplicity, in a single direction: the positive x - direction of 
frame S with a constant velocity v as measured in frame S.

If in addition, we suppose Postulate 2, then we have LT: 

 = ,x x vt   (3.1)

2
= .vxt t

c
    
 

 (3.2)

We suppose here that the synchronisation is achieved in a 
frame S by transporting clocks from the origin which shows 
time zero when the clock Co shows time zero to the position x 
"slowly" (that is, considering the limit as the transport velocity 
goes to zero).

It is convenient to use notation and the setting described 
by: (A) Let x'_0 be a point which is fi xed at S  and time intervals 

between events E1 = (x1,t1) and E2 = (x2, t2) which coincide with 

E'1=(x'0, t'1)  and E' 2= (x' 0, t' 2).

Consider for a moment that (LT) holds. Next from (LT1), 
we fi nd = /x x vt   and if we substitute in (LT2), we have 

2= / /t t x v c   and therefore

t'2 - t'1 = (t2 - t1)/γ

Motivated by this formula using the notation in the setting 
described by (A) we can consider a more general hypothesis:

 2 1t'_2  t'_ 1 = ( )t t , where  is independent of 0x .

Also motivated only by the homogeneity of space and time 
(without the second postulate) we can suppose that in the 
setting described by (A):

( 1H ):  2 1t'_2  t'_ 1 = ( )t t , for arbitrary 0x , t'_1,t'_2, where 
= ( )v  .

By symmetry from (H1) it follows

t'_2-  t'_1

Thus for frames in a relative motion (H1) is equivalent to 
(H2).

To compare the general transformation obtained from (H2) 
it is convenient to introduce 1=  .

We call 1=   the general coeffi cient of the time dilatation.

If in particular = inv  , then (H1) has the form

(L) t_2'-t_1 = (t_2-t_1)inv .

If (H2) holds with = we say that clocks in S and S  satisfy 
the Lorentz time dilatation condition (L-TD).

(L-TD) follows from the second postulate and it is a 
substitution for it. Namely, if (L-TD) holds, then the two-way 
speed of light measures along x-axis and x -axis in S and S  
respectively is c.

Various experiments confi rmed both time dilation and the 
twin paradox, i.e. the hypothesis (L-TD). Bailey et al. (1977) 
[29] measured the lifetime of positive and negative muons sent 
around a loop in the CERN Muon storage ring. This experiment 
confi rmed the hypothesis that clocks sent away and coming 
back to their initial position are slowed with respect to a resting 
clock (time dilation and the twin paradox). It is interesting 
that Albert Einstein and Max Born tried to explain the aging 
concerning the twin paradox as a direct effect of acceleration. 
But it turns out that neither general relativity nor even 
acceleration, are necessary to explain the effect.

Question 3: But we do not know whether there is a 
convincing explanation based on reality why clocks in motion 
are satisfying relation (L-TD). 
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Symmetry in the physical sciences

We are going to use symmetry (as that te rm is understood 
in the physical sciences) in the next deduction, and note that 
this procedure is generally accepted in physics. As for rigor in 
the mathematical sense, see Question 4.

Now we consider that the hypothesis (H2) holds and derive 
modifi ed (LT).

Proposition 3.1: Let S and S  be frames in standard confi guration 
and suppose that S  moves in a single direction: the x-direction of 
frame S with a constant velocity v as measured in frame S and that 
(H1) holds. Then 1= ( )x x vt  . 

This can be considered as a generalization of LT. 

Proof: We advise the reader to follow the proof using Figure 
2. We can suppose that events E=(x,t) and =( , )E x t   . >0t
, coincide and fi x for a moment M=x and =M x  . Let x0=vt. 
Therefore there is a point x0 such that events (x0,t) and 0(0, )t   
coincide. Set M0=x0.

To visualize imagine that the rod R is placed along O M   
in S .

The length of the rod R in S is (1) l = x-x0=x-vt.

Next, by symmetry we can consider that S moves in a single 
direction: the x -direction of frame S  with a constant velocity 
-V as measured in frame S . Thus we can imagine that M is 
moving to the origin O  in S  with velocity -V. Next suppose 
that when M arrives to coincide with the origin O  in S , the 
devices at S and S  show time t1 and 1t  respectively. Observer 
in S measures the length of the rod as l=v(t1-t) and observer in 

S  measures 1= ( )l v t t   . In this setting clock CM which is at rest 
in S shows the increment of time t1-t and by (H2) 1 1= ( )t t t t     
and therefore 1 1= ( )= ( )=l v t t v t t l     . Thus by (1) l= (x-vt) 
equals x  . Hence 1= ( )x x vt  . 

Question 4: We used symmetry in the previous inference. It 
seems that in the mathematical sense, we need to give an additional 
explanation. Why we can consider that S is at rest and draw some 
conclusions, and then consider that they (S and S ) can change roles 
and apply it to S . For example, if S is a fi xed system, it seems we 
cannot apply symmetry. 

In addition, suppose that the rod of length l  is placed at 
rest in S .

Now suppose that we have time measuring devices at every 

point of any given frame and that two frames S and S  are in 
standard confi guration.

Proposition 3.2: If two frames S and S  are in standard 
confi guration and (H2) holds, then 

1. If the rod R of length l  is placed at rest in S . Then an 
observer in S measures =l l  . 

2. 1= ( )x x vt   .

3. 
2

1 (1 )= ( )xt t
v
   .

4. We can adjust time measuring devices in S and S  such 
that the speed of light is the same in S and S . 

5. If 1=   , then 2 2(1 ) / = /x v vx c . Thus we get LT. 

Outline of proof: We can suppose that the end of the rod 
is at O  at =0t  and = =x l A   and that when A arrives at the 
origin O in S, the devices at S and S  show time t1 and 1t .

Then observers in S and S  measure that the length of the 
rod is l =vt1 and 

1=l vt   respectively. By (H2) 1 1=t t   and therefore 

1 1= = =l vt v t l   . Next ( )x vt  equals =l x  . We can consider 
that S moves in a single direction: the x -direction of frame 
S  with a constant velocity -v as measured in frame S . Hence 
by (1) 1= ( )x x vt  . Here we can consider that x is at rest in 
S. Note here that 2) in Proposition 3.2 is stated as Proposition 
3.1. [W]

It is suitable accordingly LT to introduce 1=  . By 
Proposition 3.1 = ( )x x vt   and by symmetry = ( )x x vt   . 
Hence

2(1 )= ( )xt t
v


  .

Lorentz time dilatation

In [25], Cuvaj Camillo gave a Survey of Langevin's Work in 
Relativity.

Langevin's light-clock

Suppose th at we have two inertial frames S and S  in 
standard confi guration with relative velocity v  and consi der 
point =(0,0, )M L  in S . We fl ash light signal from O  to M  
and refl ects back to O  in time interval At .

If the total round-trip time of the pulses in S is tB using 
Pythagorean theorem and the second postulate we get tB = tA. 
Note that it follows directly from (L). Langevin, see for example 
[25], in order to explain time dilation visualize it by a thought 
experiment using a light-clock (originally developed by Lewis 
and Tolman in 1909.

Motivated by Langevin's approach we consider the 
following thought experiment: (B): Let's imagine straight lines 
long enough with rails (as track) and a train on rails moving 
at a speed v relative to the track. We can identify the frame 
xy-axis of S with track and frame S  with train. Next, we can 
imagine a box (Rectangular prism) Q on a train of perfectly 
refl ecting walls wherein a light signal refl ects back and forth 

Figure 2: 
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from opposite faces(which is a light clock). Box Q is posted on 
the train with bases faces A and B and height L  such that

a) The horizontal box: the bases are parallel to yz-plane.

b) The vertical box: the bases are parallel to xy-plane.

We can imagine a "light clock" as a box of perfectly 
refl ecting walls where a light signal successively refl ects on 
opposite faces A and B.

It is interesting that Langevin considers the case a) and 
determines the Lorentz factor . Let C0 be a clock which is at 
rest on the base face A in S . In case b) we can use a moving 
frame S  consisting of two mirrors at a distance L  and that 
speed of light measured along a line orthogonal on x,y axis is c 
and Pitagorian theorem. Let t, t  be the time of a light signal to 
move from A to A and refl ects back to A in S and S  (measured 
by the clock OC  ) respectively. If we suppose that S is a fi xed 
frame (we can not use symmetry here) and that the speed of 
light is c in z -direction in S  then by Pitagorian theorem 

2 2 2 2 2 2=c t c t c v   and hence = /t t  .

In case a) suppose that T, T   be time for a light signal to 
move from A to B and refl ects back to A in S and S  (measured 
by the clock OC  ) respectively. Let L be height of the box 
measured in S. Then 

2 2

2= LcT
c v

and let =2 /V L T   be the two-way speed of light in S . If 

=V c , then =2 /T L c   and using = /T T   we fi nd =L L . We 
summarize: 

Proposition 4.1: Suppose the setting described by (B) above.

1. In the case b) of the vertical box, if the speed of light is c 
in z -direction in S  then = /t t  . 

2. In the case a) of the horizontal box, 
2 2

2= LcT
c v

. In addition, 

if the two-way speed of light in S  in x  and z -directions is c, 
then = /T T   and =L L . 

Now we introduce a hypothesis that is a weaker assumption 
than Einstein's second postulate.

Postulate 3. The two-way speed of light in x  and z
-directions S are c.

Using the above consideration we can derive. 

Proposition 4.2: Let S and S  be frames in standard 
confi guration and suppose that S is the rest frame and that S  moves 
in a single direction: the x-direction of frame S with a constant 
velocity v as measured in frame S and that Postulate 3 holds. Then in 
the case a) of the setting (B), = /T T   and =L L . 

Proposition 4.3: Let S and S  be frames in standard 
confi guration and suppose that S  moves in a single direction: the 
x-direction of frame S with a constant velocity v as measured in frame 

S and that (L-TD) holds. Then the two-way speed of light measures 
along x-axis and x -axis in S and S  respectively is c. 

Note that we do not suppose here that S or S  is fi xed frame.

Outline of proof: Consider the setting (B) described by the 
case a). Then by (L-TD) we have = /T T   and by symmetry we 
fi nd =L L . Hence

2
2 2

2= =2 /LcT L c
c v




and 

22=2 / = =2 / = .
/
LV L T L T c

T
 


  

Remark 1: It seems that the proof works if we suppose only 
synchronization Hypothesis continuity of time (HCT) without some 
special synchronization. It seems that (L-TD) and (HCT) imply some 
kind of synchronization. 

Let's imagine straight lines long enough with rails (as 
track) and a train on rails moving at a speed v relative to the 
track and imagine a box (Rectangular prism) Q on a train of 
perfectly refl ecting walls wherein a light signal refl ects back 
and forth from opposite faces (which is a light-clock). Here we 
consider the track as S and the system on the train as S .

In [20] Wu considers that Einstein’s Velocity Time Dilation 
is nothing but an imagination or a pure mathematical time.

A corollary of SRT is that at any given moment the travelling 
clock in the frame S  is running slow in the ''stationary'' 
inertial frame S , but based on the relativity principle one 
could equally argue that S - clock is running slow in S  inertial 
frame. Roughly speaking clock which is at rest in its own 
frame is running slow. In relativity theory clock which is at 
rest in its own frame measures small the increment of time 
by the Lorentz factor 1/ It seems here that we need a physical 
explanation for it.

Recall in Langevin's thought experiment a "light-clock" is 
used.

Question 5: Whether a "light-clock" measures real physical time 
and whether an atomic clock, an ordinary clock measures the same 
time as a "light clock"? 

Suppose that K and S are in relative motion and (L-TD) 
holds.

In this situation, we can use symmetry.

If event 1 =( , )E x t  in S coincide with event 1 =( , )F    in K 
and when O arrives at  at moment t1 in K the clock C0 at O 
shows time t1 then x=(t1-t)v. By symmetry, we can imagine 
that  moves to O and arrives there at events 2 1=( , )F  

 which 
coincide with E2=(0,t1). By (L-TD) t1-t=(1-) and therefore

(i) = ( )x v   .

Absolute frame and absolute time

If we suppose that K is an absolute frame and that clocks 
in K are synchronized in a standard way with respect to origin 
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(as in Defi nition 2), then the above-defi ned ti me in K can be 
considered as absolute time. In the frame K we denote the 
origin by *O  and use coordinates (, , , ). 

Proposition 4.4: Let K and S be two inertial frames in standard 
confi guration with relative velocity V. Suppose that K is an absolute 
frame. We have two possibilities: 

1. The time defi ned in K is considered as absolute time.

2. We can synchronize clocks in S with respect to the origin 
O. 

In the case (1) =x v  .

If in addition, we suppose Postulate 3 in the case (2) we get 

= ( )x v   . 

Outline of proof: Recall that we suppose that clocks in K are 
synchronized wrt the origin *O  as in Defi nition 2. In the case 
(1), we suppose that clocks in K defi ne an absolute time. For 
example if point x in S coincide with  (with events (,,)) we 
use the clock C) to measure time in S (or that the clock Cx at x 
shows time t=).

If event ( , )x t  in S coincides with event ( , )   in K and when 
O arrives at  at moment 1 then we have

(i) 1=( ) =x v v     .

In case (2) we have STR with absolute frame.

We can not use symmetry between S and K, but using 
Proposition 4.2 we derive (ii). [W]

Question 6: Suppose that frames S and S  are in a standard 
confi guration and clocks in S are synchronized with respect to the 
clock Co at the origin O (here we use that the speed of light is c in S 
between O and arbitrary point M). Let = xt t   is time of clock OC   when 

O  is at position x in S and t=tx is time of clock xC . It seems that t  is 
defi ned without the use of Postulate 2 (ie. that the speed of light is c 
in S ). In this setting whether =t t  ? 

We plan to add further results in a forthcoming paper. In 
particular, we plan to consider the rest frame and use other 
hypotheses related to (L-TD) (and Postulate 2) and connect STR 
with hyperbolic geometry, the geometry of Minkowski space, 
and Möbius transformations.

Conclusion

The work is in progress and in this introductory paper, we 
have outlined a mathematical model motivated by the special 
theory. We hope that work in this direction will contribute to a 
better understanding of Special Relativity Theory (STR).
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