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Abstract

This work uses a truncated M-fractional derivative variant of the Oskolkov model to investigate the dynamic behavior of solitary wavefronts. The methods used in 
this framework produce a variety of solitary waveforms, such as bright and dark solitons. A suitable choice of the free parameters is used to investigate the geometrical 
structures for the wave solutions, which are further characterized by stable bright periodic and soliton waves. The coeffi  cient of the highest-order derivative and the 
effects of fractionality are shown in the fi gures. Moreover, the graphics are arranged to highlight the characteristics of novel soliton wave propagation. The fi ndings of this 
research demonstrate that the fractional Oskolkov model may accommodate fundamental and higher-order soliton behaviors, each of which has unique characteristics. 
The fractional form of the several dynamical solitary waves seen in the study represents their practical ramifi cations. These waves can be seen as transmission waves 
via a Kelvin-Voigt fl uid. 
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Introduction

In the present global phase of science and technology, 
nonlinear wave phenomena are attracting the attention of 
scientists and engineers more and more. For a considerable 
amount of time, nonlinear waves have been seen in nature, 
and discovering new nonlinear waves and acquiring knowledge 
about their basic properties are usually fascinating and 
challenging tasks [1-3]. Nonlinear partial differential equations 
(NPDEs) play a fundamental role in many scientifi c fi elds to 
understand nonlinear wave events, which comprise many of 
our daily challenges. NPDEs have garnered signifi cant interest 
in the realm of nonlinear sciences owing to their diverse 
applications and usage throughout the last few decades. Fluid 
mechanics, ocean engineering, plasma physics, optical fi bers, 
quantum physics, biology, geology, and many other scientifi c 
fi elds depend heavily on NPDEs to describe the dynamical, 
physical, and physical processes [4-8]. A relatively wide class 
of NPDEs has been derived to explain physical phenomena. 

Examples of these include the sine-Gordon equation, the Lax 
fi fth-order KdV equation, the Korteweg-de Vries equation, 
the Kadomtsev-Petviashvili equation, the Sawada-Kotera 
equation, and many others [9-17]. In numerous scientifi c 
domains, especially in the analysis of complex nonlinear pulse 
phenomena, comprehending numerous physical processes is 
contingent upon the analytical solutions of NPDEs. In recent 
times, researchers have placed increasing emphasis on locating 
analytical solutions since these effi cient computer packages 
facilitate the completion of diffi cult and time-consuming 
algebraic computations [18-20].

Numerous numerical and analytical solutions have 
emerged from various recent methodologies. These estimation 
techniques focus on examining the evolving wave solutions 
of equations, which play a crucial role in the production 
and develop novel computational approaches for assessing 
these estimated equations. Recent literature has explored 
diverse numerical methods for tackling linear and nonlinear 
PDEs. Notably, physics-informed neural networks (PINNs) 
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have gained attention for their effi cacy in solving PDEs [21]. 
Additionally, traditional techniques like the fi nite element 
method (FEM) remain prevalent due to their versatility in 
handling various types of PDEs [22-24]. A comparative study 
[25] evaluates the explicit fi nite difference method against 
PINNs specifi cally in the context of solving the Burgers' 
equation, shedding light on their respective strengths and 
limitations. This literature review highlights the evolving 
landscape of numerical approaches for SMITHs, emphasizing 
the signifi cance of methodological comparisons to advance 
computational techniques in scientifi c research. This study 
presents an analytical investigation and discussion of the 
fractional Oskolkov model [26,27]. Therefore, it is crucial to 
look for wave solutions for NPDEs. To do this, scientists and 
researchers have devised several effi cient techniques that yield 
precise solutions for NPDEs in a variety of forms. These methods 
include the Darboux transformation [28], trial solution method 
[29], Hirota technique [30], new Kudryashov schemes [31,32], 
new extended direct algebraic method [21], rational-expansion 
and improved Tanh scheme [33], new auxiliary method [34-37] 
and enhanced rational-expansion method [38] and so on.

For millennia, complex physical and biological systems 
have been studied through the use of fractional derivatives 
[38-40], a particular kind of derivative. The generalization 
of the ordinary derivative found in calculus is the idea of a 
fractional derivative in mathematics. The idea of changing the 
exponent of an argument of a function serves as the foundation 
for this defi nition of a derivative. Fractional derivatives provide 
more precise models for modeling non-linear systems and 
can be used to simulate second- and higher-order dynamical 
systems. This improves the accuracy of predictions made in 
domains such as signal analysis and fl uid dynamics [41,42]. 
Recent research has examined how well fractional differential 
equations represent real-world issues compared to classical 
order. Because of this, scientists are looking for solutions to 
these fractional order differential equations [43,44].

Several techniques have been employed to determine the 
estimated analytical outcome of these so-called fractional 
differential equations. Within this context, we solve the 
M-truncated time fractional Oskolkov equation [25] using 
the modifi ed auxiliary equation method (MAEM) [45,46]. The 
Oskolkov equation is used to determine the shape and size of 
a thin-walled pressure vessel, such as a tank or reactor. It is 
also employed in many other engineering fi elds, including 
mechanical and chemical engineering, and is particularly 
helpful for designing pressure vessels for applications involving 
high temperatures and pressures. Stress and strain, among 
other mechanical characteristics of a pressure vessel, can 
also be computed using the Oskolkov equation. The fractional 
Oskolkov equation has the following form 

, , = 0,, ,D q D q q qqxx xx xM t M t
                    (1)

where ,
,DM t

  is truncated M-fractional differential operator. 

Numerous intriguing phenomena have been made apparent by 
the soliton framework via the considered model M-fractional, 
including the possibility of localized wave packets propagating 

over large distances at constant speed and shape and the 
formation of multi-rogue waves via soliton collisions with sine-
shaped functions, which explain the properties of massive type 
seismic waves. The governing model has never been examined 
using the MAEM, even though this equation has been solved 
previously using several analytical methods. This method has 
also been applied in numerous research to investigate various 
models. However, this method greatly simplifi es the process 
of solving the considered model to identify new solutions. The 
assessment community has supported this technique from its 
inception due to its simple estimation process.

This article is formatted as follows: The fundamental 
concept of the fractional derivative is given in Section (2). 
In section (3), the suggested approach has been described. 
The governing model and the newly discovered solutions 
are presented in Section 4. Section 5 contains the solution 
solutions and a discussion of the graphical representation of 
the solutions. Final remarks are made in Section (6). 

F ractional calculus fundamentals

A generalization of classical calculus that addresses non-
integer order integration and differentiation methods is called 
fractional calculus. In this part, some fundamental discussions 
of fractional calculus are given. 

M -truncated derivative

Let :[0, )    then truncated-M derivative [47] of order 
 is defi ned as 

1( ( )) ( ), 0( ) = , 0 < 1, > 0,lim, 0 00

E
M

          

   




where (.)E  is The Truncated Mittag-Leffl er function of single 

parameter that is defi ned as 

( ) = ,
( 1)=0

ki zE zi kk
   

in which Ω>0 and zc. Let , 0 1c c   and  

and μ are -differentiable at a point k>0, the

, , ,( ( ) ( )) = ( ( )) ( ( )),, , ,0 1 0 1c c c cM M M
           
       where 

co,c1 are real constants.

, , ,( ( )* ( )) = ( ) ( ( )) ( ) ( ( )), , ,M M M
               
     .

, ,( ) ( ( )) ( ) ( ( ))( ) , ,, ( ) =, 2( ) ( )
M M

M

           
    

   
 .

1 ( ), ( ) =, ( 1)
d

M d

     


 

 .

,
, ( ) = 0,  ( ) =M d d
    is constant.

De scription of applied method

Different analytical procedures can solve the fractional 
model under consideration; however, their suitability for its 
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damping and nonlinearity may vary. This section introduces 
two successful analytical techniques We are going to use 
modifi ed auxiliary equation method this instance. 

Mo difi ed auxiliary equation scheme

According to this scheme, the solution has the following 
form:

( ) ( )( ) = ,0=1 =1

n nif ifF r K r Ki ii i
                    (2)

Here ri and i are constants. The following auxiliary 

equation is satisfi ed by f() 

1( ) = ( ).
( )

f ff aK b K
ln K

                 (3)

a,b and  are the constant to be determine later with the 

condition that k>0 and k≠1.

Eq. (3) has solutions in following form

Family I:

If b2-4a<0 and ≠0 

2424
2( ) = ,

2

a bb a b tan
fK

 




 
 
  
 

  
                (4)

or 

2424
2

= .
2

a bb a b cot
fK

 



 
 
  
 

 


             (5)

Family II:

If b2-4a>0 and ≠0 

2 42 4
2

= ,
2

b ab b a tanh
fK





 
 
  
 

 


             (6)

or 

2
2 44

2
= .

2
f

b ab b a coth

K





   
 
 

             (7)

Family III:

If b2-4a=0 and ≠0 then 

2= .
2
bfK 

                (8)

Eq. (2) is inserted into the modifi ed ODE. Based on 
comparing the coeffi cients of kf() to zero, a set of equations has 
been calculated. After the system is solved, the constants r0, 
r and  are evaluated by comparing the coeffi cients to zero 

for kf(). After the evaluated constants are inserted into Eq. (2), 
precise answers can be obtained. 

Fractiona l governing model

Here, we use MAEM to integrate the governing model and 
obtain the wave solution for the fractional Oskolkov equation 
with a time M truncation. The model is in the following form 

, , = 0,, ,D q D q q qqxx xx xM t M t
                   (9)

  and   are parameters and q(x,t) is a wavefront. The 

transformation q(x,t)=G() and 
( 1)= kx t  


   has used 

to convert Eq. (9) in an ordinary differential equation (ODE). 
Hence, it has taken the following form: 

2 ' 2 ' 22 2 2 = 0,k G k G G kG                  (10)

where the derivative owing to   is shown by G and  be the 
traveling wave velocity, k be the wave number,  be the wave 
variable and μ be the order of fractional derivative.

The paper's next subsection uses an analytical technique to 
derive the dynamical structures of wave solutions. 

Novel analytic al results

Applying homogeneous balance principle, it gives N=2. 
Taking N=2 in Eq. (2) we have solution in following form 

       2 1 2( ) = ( ) ( ) .0 1 2 1 2
f f f fG r r K r K K K         

 
       
                   (11)

Substituting Eq. (11) into the ODE Eq. (10) and collecting 
terms with same power of kf() and equating to zero we get 
the set of algebraic equations following this set, we get the 
following result: 

255 31 1 1 1 1 11 1= ,   = ,   = ,   = ,   = ,  212 6 50 41 1 1 1
23 1 1 1= ,   = .0 22 4 1 1

r rr a
k

a a r r

r r
r r

r

      
   





   

 



  
                             (12)

Utilizing the aforementioned parametric values, the solitary 
wave solutions of governing model can obtain as follow:

If b2-4a<0 and ≠0, then 

4
1tanh 11 1
1( , ) = ,1 2

14 tanh
1

a r
r

G x t
a r










  
  
     

  
  
     





               (13)

where 
( 1)= kx t  


  .

If b2-4a<0 and ≠0, then 
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4
1tan 11 1
1( , ) = ,2 2

14 tan
1

a r
r

G x t
a r










  
  
     

  
  
     




            (14)

where ( 1)= kx t  


  .

Graphical depiction

 The impact of fractional parameters and the coeffi cient 
of the highest order derivative term on the 3D and 2D profi les 
of the identifi ed Oskolkov model's soliton solutions are 
investigated in this section. Periodic, single, and dark bell 
solutions were investigated due to different values of the free 
constant. These solutions have been applied to the description 
of light transmission in optical fi bers, water surf transmission 
in shallow water, and pulse propagation in a nonlinear elastic 
media. The acoustic impacts of dispersion and inhomogeneity 
on the propagation of a fl ow pulse can be investigated using 
the solitary waves of the Oskolkov model. In the fi gure, the 
effects of parameters shows with 3D as well as 2D plots. We 
depict the solution for Eq. (13) for = 1.2 , k = 0.5,  = -0.5, v=1 
and different values of   as μ = 0.3, μ = 0.5 and μ = 0.7 and μ = 0.9 
(Figures 1-3). 

Conclusion

This artic le discusses the progress made in creating new 
exact soliton methods to deal with time M-fractional Oskolkov 
models. The nonlinear model caused by different soliton and 
traveling wave faces is solved using the modifi ed auxiliary 
equation method. In fact, using this technique, we were able 
to get fractional-time solutions that were stated as rational 
functions and polynomial functions with a few free parameters. 
The computations led to some creative exact solutions for the 
unique value of the free parameters. Figures 1 through 3 show 
these solutions together with matching three-, and two-
dimensional graphs. Furthermore, by using the differentiation 
parameters μ as 1, 0.7, and 0.5 in the preceding picture, we 
were able to effectively illustrate the impacts of truncated 
M-fractionally. The fi ndings thus demonstrate that projected 
scheme is highly successful, straightforward, and effi cient in 
comprehending the nature of waves, and that solutions from 
the Oskolkov model represent more authentic natural events 
than those derived from alternative techniques. 
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