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Abstract

In this paper, we present and examine a novel subset of the function class 3, which consists of analytic and bi-univalent functions defined in the open unit disk U and
connected to the Salagean differential operator. Additionally, we determine estimates for the Taylor-Maclaurin coefficients |a,| and |a,| functions within this new subclass

and enhance some recent findings.

2010 Mathematics Subject Classification. 30C45; 30C50.

1. Introduction

Consider the class of functions A defined as

— & n
f(@)=z+ nEZanZ , (1.1)
where f(z) is analytic in the open unit disk U=zeC:|z[<1
Let s be the subset of functions feA that are univalent in U.

The Koebe one-quarter theorem [3] states that for every

1
fes, image of U under f contains a disk of radius 1 Thus,

every fes has an inverse f, defined as

N fe)=zzeU,

and

f(f_l(w))= w, for [w[<7,(f), where ro(f)z%,

with
f_l(w) =g(w)= w—azw2 +(2a§ —a3)w3 —(Sa% —5a2a3 +a4)w4 +...
(1.2)

A function feA is bi-univalent in U if both f and f are
univalent in U. Let ¥ be the set of bi-univalent functions in
U given by [1,6].

Several authors have investigated bounds for various
subclasses of biunivalent functions [2-5,7-14]. However,
the estimation of the Taylor-Maclaurin coefficients |a,| for

N

n GW;N :={1,2,3,---} remains an open problem.

In 1983, Salagean [13] introduced the differential operator
pk :A— A defined by

P f(2)= f(2).

Dlf(2)=Df(2)= o "(2).
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DF £(2) =D f(2)) = 2(DF L f(2)), ke

That is, the Salagean differential operator D* applied to a

function f(z) is defined recursively as the derivative of D¥f(z)
multiplied by z. This operator is employed in the study of
analytic functions, particularly for estimating coefficients of
certain classes of functions. It should be noted that

k .. % k. .n -
D" f(z)=z+ 22;1 apz”, keNO {0} UN.
=

This paper aims to introduce a new subclass of the function
class ¥ associated with the Salagean differential operator and
derive estimates for the coefficients |a,| and la,| functions
within these new subclasses of the function class.

2. The subclass Sg’p

In this section, we introduce and investigate the general

subclass Sél P

Definition 2.1: Let the functions h,p:U— C be so constrained
that

min{Re(k(z2)),Re(p(z))} >0, ze U, a(0)= p(0)=1.

Also let the function f, defined by (1.1), be in the analytic
function class A. we say that

feSPP(k,2), keNy0< A<,
if the following conditions are satisfied:

(1= 2)DK (z)+ aDF 1(2)

feX and eh(U), zelU, (2.1)

and

gw) U U
(l—l)Dkg(w)+,11)k+lg(W) e p(U), we (22)

where the function g(w) is given by (1.2).

Remark 2.2: There are many choices of the functions h(z) and
p(z) which would provide interesting subclasses of the analytic
function class A.

h(z)=p(z)=(ii—§)a and k=1=0, we have

Sél’p(oao)zsg(a) and k=1,A=0, Séz’p(l’()):}(:z(a)

1. For

where the classes S;(a) and K (a) of bi-starlike

functions of order o and bi-convex functions of order o
corresponding, was introduced and studied by Brannan
and Taha [1].

2. For h(z):p(z)zh(}_izﬂ)z and k=r=0, we have
—Z

SEPO.0=S(A) and kerizo,  SP(L0)-Ky(p)
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where the classes Sg(,b’) and Ks.(B) of bi-starlike

functions of order p and bi-convex functions of order g
corresponding, was introduced and studied by Brannan
and Taha [1].

3.For h(z)= p(z)= (17 2)%

1-z

we have gg’l’ (k,A) = ggaﬂ (ar) and

taking h(z)=p(z)=%’ Sg’p(k,ﬂ)=5§’ﬂ(ﬂ)

where the classes Sg’ﬂ“(a) and Sg’ﬂ“(ﬂ) was introduced
and studied by J.Jothibaso [6].
3. Coefficient estimates
For proof of the theorem, we need the following lemma.

Lemma 3.1: (see [3]). If peP, then |c |<2 for each k, where
p is the family of all functions p(z) analytic in U for which
Re(p(2))> 0. p(z) =1+ ¢z +cyz? oo for zeU.

Theorem 3.2: Let f(z) given by the Taylor Maclaurin series

expansion (1.1) be in the class S£’p(k,/1),(0 <a<1)-Then,

|, [ min \/‘ h’z(ggjlzlli(i)z) & ’\/22k+2}2:1(g)_|1+)|f ggﬂ ok [
(3.1)
and
RO+ PO | |K"(©)]+]p"O)]
| ag [< ming 2642 * sk
O+ p"O)] [0 +]p"©)]

8(1-A)3k  22k+22 _1yig1-apk

Proof. First of all, it follows from the conditions (2.1) and
(2.2) that

Dk+1f(2)
=h(z), U, 2
(l—l)Dkf(Z)‘i'ka-i_lf(Z) (Z) ze (3 )
and
k+1
D™ g(w) = p(w), we, (33)

(1- DX g(w)+ 1Dk g (1)
where the function g(w) is given by (1.2). respectively, where
h(z) and p(w) satisfy the conditions of Definition (2.1).

Furthermore, the functions h(z) and p(w) have the following
Taylor-Maclaurin series expansions:

h(z)=1+hz+hyz? +...
and

p(w)=1+p1w+p2w2+...
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Now, equating the coefficients in (3.2) and (3.3), we get

2k(1—,1)a2 =y, (3.4)
22k(/12—1)a§+2.3k(1—/1)a3 =y, (3.5)
~2k(1-2)a, = p;. (3.6)

238 (1-2)2a3 —ay)+ 22K (22 -1)ad = p,. (3.7)

From (3.4) and (3.6), we obtain

h=-p

and
12+ p? =224 12 )22 (2.8)
Also, From (3.5) and (3.7), we find that
hy + py =22 (22 -1)+2:3k (1- 2))a2. (3.9)

Therefore, we find from the equations (3.8) and (3.9) that

|a@Ah©FHp®F
and
lay PO+ 7O)

T 22KH2(32 i3k ay

respectively. So we get the desired estimate on the coefficient
la,| as asserted in (3.1). Next, to find the bound on the coefficient
Ia3|, we subtract (3.7) from (3.5). We thus get

hy =y :4v3k(17/1)(a37a%). (3.10)
Upon substituting the value of a% from (3.8) into (3.10), it
follows that
i +P12 . hz Py

We thus find that

IROF [ pO)F 1O+ p(0)]

lay <
22k p)2 8.3k (1-2)

On the other hand, upon substituting the value of a% from
(3.9) into (3.10), it follows that

hopy | hy+py

- 4.3k1-2) 4.3k0- /1)+22k+1(12 1)

Consequently, we have
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[A"(0)]+]p"(0)]

0y QL PO _
83K (1- 1)+ 22k+2(2 1)

8-3K(1-2)

This evidently completes the proof of Theorem 3.2.
4. Corollaries and consequences
. _ _ 1+z a .
By setting /(z) = p(z) = (E) , (0<0=1) in Theorem 3.2. we
get the following consequence.

Corollary 4.1: Let the function f(z) given by the Taylor-
Maclaurin series expansion (1.1) be in the bi-univalent function class

Sé”p(k,i) , (0<A1). Then

2a

, k=0,
22K (2 21y ac- a3k
la, I< 7]{2" : k=1,2,3,...
P
and

2a2 a2 _
2%, ;2 T K =0,
22k22 _1yy—223F  (1-2)3

2 2
da a k=123,

la, < + >
3 22k (1-a)3k

Remark 4.2: Corollary 4.1 is an improvement of the following
estimates obtained by J.Jothibaso [6].

Corollary 4.3: (see[6]) Let the function f(z) given by the Taylor-
Maclaurin series expansion (1) be in the bi-univalent function class

SEA (). Then

\a < 2a
Jaa(1- 3% 12622~ 1)~ (@ -1)(1- 22122k

and

2
|zl 2k4a Tt
22k(1- 2 3k

Remark 4.4: It is easy to see that [(i)]

1. For the coefficient |a,l, If k = 0 and 0<a=<1, we have

2a < 2a )
V222 2 pa0-a)3F  Jaa(- 23 +2a(22 -1 —(@-D(1-2) 22k

In another case, if k = 1,2,3... and 0<a<1, we have

2a < 2a .
K- a1 3% 12022 1)~ (@ -1)(1-2) 22k
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2. For the coefficient la,l, we make the following
observations: If k=0 and 0<a<1, we have
202 < 4o
22k a2 _1yr—2a)3k  2Zk(1- )2’

and

a2 o

< .
=23k~ (1= )3k

Then

2a2 + a2 < 4a2 N a
22k 2 _1yr—2a3k -3k 22ka- a2 -3k

In another case, if k = 1,2,3... and 0<a=<1, we have

a2 a

< .
(=235~ (1-a)3k

Then

4a2 az 4a2 a
2, ot ] &
2Zk(-2 -3k 2Zka-? (-3

Thus Theorem 3.2 clearly improves the estimate of
coefficients |a,| and Ia3| obtained by J.Jothibaso [6].

By setting h(z)= p(z) = (H—Z)“ , k=1=0 in Theorem 3.2. we

1-z
get the following consequence.

Corollary 4.5: Let the function f(z) given by the Taylor-
Maclaurin series expansion (1.1) be in the bi-univalent function class

S5.(@) . Then
|ay [<\2a, and |ay < 3a2.

Remark 4.6: Corollary 4.5 is an improvement of the following
estimates obtained by the coefficient estimates for a well-known

class Sg(a) of strongly bi-starlike functions of order o as in [1].
By setting h(z)= p(z)= “q‘&,(os B<l,zel) in
-z
Theorem 3.2. we get the following consequence.

Corollary 4.7: Let the function f(z) given by the Taylor-
Maclaurin series expansion (1.1) be in the bi-univalent function class

Sg’p(k,/l) , (0=<1). Then

2-p [ 2-p) }

< mi ,
1| mm{zk(l/l) V22K (a2 -1+ @-22)3F

and

Jaa-p? | 1-p 20-5) .
) ’ )
N mm{22k(1_1)2+(1—/1)3k 22k(/12_1)+(2_2,1)3k+(1—/1)3k}

Remark 4.8: Corollary 4.7 is an improvement of the following
estimates obtained by J.Jothibaso [6].
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Corollary 4.9: (see[6]) Let the function f(z) given by the Taylor-
Maclaurin series expansion (1.1) be in the bi-univalent function class

MEA(p) . Then

) —
V22k (22 —1)+@-22)3F

‘az I<

and

41-p>% | 1-p
22k )2 -3k

\a3 <

Corollary 4.10: By setting k=A=0 in Corollary 4.7, we have the
coefficients estimates for the well-known class 8;(,8) of bi-starlike

functions of order B as in [1]. Further, taking k=1,.=0 in Corollary 4.7,
we obtain the estimates for the well-known class kz(ﬁ) of bi-convex
functions of order B and our results reduce to [1].

Conclusion

This paper introduces a new subclass of the function class ¥
involving analytic and bi-univalent functions associated with
the Salagean differential operator. Our study provides estimates
for the Taylor-Maclaurin coefficients |a,| and |a,| for functions
within this subclass, contributing to the advancement of
knowledge in this area. The findings enhance recent research
in the field and open up new avenues for further exploration
and development in the theory of analytic and bi-univalent
functions.
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