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Abstract

In new technological applications, it is important to use vortex distributions in the area for obtaining large velocity fi elds. This paper, it was calculated the distribution 
of the velocity fi eld and distribution of stream function for ideal incompressible fl uid, induced by a different system of the fi nite number of vortex threads: 1) circular vortex 
lines in a fi nite cylinder, positioned on its inner, 2) spiral vortex threads, positioned on the inner surface of the fi nite cylinder or cone, and 3) linear vortex lines in the plane 
channel, positioned on its boundary.

An original method was used to calculate the components of the velocity vectors. Such kind of procedure allows calculating the velocity fi elds inside the domain 
depending on the arrangement, the intensity, and the radii of vortex lines. In this paper, we have developed a mathematical model for the process in the element of 
Hurricane Energy Transformer. This element is a central fi gure in the so-called RKA (ReaktionsKraftAnlage) used on the cars’ roofs.
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Introduction

The effective use of vortex energy in the production of 
strong velocity fi elds by the different devices is one of the 
modern areas of applications, developed during the last years, 
an example is the RKA (ReaktionsKraftAnlage) used on the 
cars’ roofs for substations reducing the air's drag [1,2] (Figure 
1), in the area for obtaining large velocity fi elds [3,4]. 

In 2004 A.Bertasius, A.Buikis, and P.Verzbovicius 
formulated a patent [5] of apparatus and methods for heat 
generation. Later A.Buikis and H.Kalis have constructed a 
mathematical model of this heat generator [6-8]. 

In this model, the viscous electrically conducting 
incompressible liquid is located between two infi nite coaxial 
cylinders (rings). The electromagnetic force drives magneto-
hydrodynamic fl ow between the cylinders. 

In 2009 designed a similar generator to [9] and created a 
mathematical model for the generator [10,11]. In the internal 
cylinder parallel to the axis are placed metal conductors-
electrodes of the forms of bars. For those conductors, the 
alternating current is connected. The water is a weakly 
electrically conducting liquid (electrolyte). This is the 
mathematical model of one device for electrical energy produced 
by alternating current in the production of heat energy.

The distribution of electromagnetic fi elds, forces, 2D 
magnetohydrodynamic fl ow, and temperature induced by the Figure 1: The cars' roofs.
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system of the alternating electric current or external magnetic 
fi eld in a conducting cylinder has been calculated using fi nite 
difference methods. An original method was used to calculate 
the mean values of electromagnetic forces.

The second interesting way in the vortexes exploitation in 
devices was collaboration with inventor J. Schatz in Germany 
[12,13]. In new technological applications, it is important to 
use vortex distributions for obtaining large values of velocity. 
The effective use of vortex energy in the production of strong 
velocity fi elds by different devices is one of the modern areas of 
applications, developed during the last decade. Such processes 
are ecologically clean; there is no environmental pollution. 
Although, on the other hand, the aspect of energy is very 
important: the transformation process should be organized in 
such a way that vortex energy is effectively transformed into 
heat or mechanical energy. In our previous papers [6,7,14,15] 
we have mathematically modeled the process how transforming 
the alternating electrical current into heat energy.

The practical aim of this investigation is to try to understand 
the process in the element of Hurricane Energy Transformer. 
This element is a central fi gure in the so-called RKA (German: 
ReaktionsKraft Anlage, English: Reaction Force Device) used 
on the cars’ roof for substation reducing the airs’ drag. This is 
all that's done at the practical level in mathematical modeling.

However, several practical and theoretical questions are left 
unanswered. Devices sometimes have worked with effectiveness 
higher than 100 Important is that in such a system there are 
strong vortices and electromagnetic fi elds or high velocities. 
For example, in [5,9] the alternating electro currency with 
voltage 380 V is about 1 ampere on 1 cm. Theoretically, the 
answer may be that we have a contradiction in the macro and 
micro processes in such devices [16].

Following Kim [17], we require a new paradigm beyond 
materialism including the information fi eld on the theory of 
Physical vacuum. It is easy to call such science pseudoscience, 
but within its framework, it is possible to portray scalar waves 
[18,19]. In recent years, there have been several other new 
approaches: space-time as energy [19]. We should discuss these 
approaches with an open mind, without a simple rejection.

The goal of this paper is to develop mathematical models 
for new types of ecologically clean and energetically effective 
devices [12,20-23].

Such a type of device fi rstly was developed by I. Rechenberg 
[1]. Now the continuator of the work is one of the authors 
J. Schatz. The devices of such type can be considered as the 
energy source of the new generation. The practical aim of this 
investigation is to try to understand the process in the element 
of Hurricane Energy Transformer [12]. This element is the 
central fi gure in so so-called RKA (ReaktionsKraftAnlage) used 
on the cars’ roof for substation reducing the air’s drag.

This work presents three mathematical models of such 
devices. It is 

1. a fi nite cylinder with a fi nite number of circular vortex 

lines positioned on its inner surface with a fi xed distance 
between each other,

2. a fi nite cylinder or cone with a fi nite number of spiral 
vortex threads positioned on its inner surface,

3. a plane channel with a fi nite number of linear vortex 
lines positioned on its boundary.

It is well known that the vortex theory began from the 
Decart papers. First of all, it investigated the behavior of 
the discrete N linear vortex lines with an equal intensity , 
which are in the vertices of the regular rectangle (authors are 
Helmholc, Kelvin, Kirhof, see [24-26]). The investigation of 
contemporary is written in the books [27,28]:

Completely are investigated linear vortex lines, vortex 
sheets, vortex wakes, vortexes of Karman, but diffi culties cause 
the curves of vortex lines. In new technological applications, 
it is important to use vortex distributions for obtaining large 
values of velocity.

The mathematical model

Let the cylindrical domain (conus) 

( ) ={( , , ) :0 < < ,0 < < ,0 < < 2 ( 1)}(0 < ), r z r a z z Z M Z ar z        

contain ideal incompressible fl uid, 

where a, Z the maximal radius and length of the cylinder, M 
is the number of circulation periods.

If  = 0; then we have the circular cylinder with the radius 
a.

Consider the situation when the N discrete circular vortex 
lines 

={( , ), = , = }, 0 < < , 0 < < ,} =1, ,L r z r a z z z Z a a i Ni i i i i

with intensity 
2

( )m
i s

  and radii ai(m) are placed in the 
cylinder.

The vortex creates in the ideal compressible liquid the 
radial vr and axial vz components of the velocity fi eld, which 
rises to the liquid motion.

Similar can be considered N discrete spiral vortex threads

={( , , ), = , = , = }, =1, ,S r z r a t z bt t i i Ni    

with parameters 

2 2= , = , 2 ( 1), = , [0,2 ].
2
Z M b a t M

N aM N
      


   

Here  is the rise of the vortex threads, the spiral vortex 
with Z=2π, a=1, N=6, M=1, =1, =0;1. 

In the Figure 2, we can see the circular vortex lines.

The spiral vortexes create in the ideal compressible liquid 
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the radial vr, axial vz, and azimuthal v components of the 
velocity fi eld.

The linear vortex lines create in the plane domain-channel 

={( , ) : [0, ], [0,2], ( , )}, x y x L y zx y     

the vx,vy components of the velocity fi eld.

The main aim of this work is to analyze the diversity of 
connection schemes of vortex curves that infl uence the 
maximal value of velocity.

Calculation of the velocity fi eld for the spiral 
vortexes

The vector potential A is determined from the equations of 
vortex motion of ideal incompressible fl uid [12,20,22,25,26]

= 0, = ,div v rot v 

in the following form:

= ,A 

where v = rotA and v,Ω the vectors of velocity and vortex 
fi elds are, ∆ is the Laplace operator.

Applying the Biot-Savar law [25,26] we receive the 
following form of the vector potential created by the vortex 
thread Wi (Wi= Si or Wi= Li):

( ) =
4 ( )

dliA P Wi R QPi i




where dl is an element of the curves, P=P(x,y,z) is the fi xed point 
in the liquid, Q=Q() is the changeable point in the integral

2 2 2( ) = (( ) ( ) ( ) ).R QP z x yi i i      

From cylindrical coordinates x=rcos, y=rsin,

for the spiral vortexes Si:

= ( )cos( ), = ( )sin( ), = ,( = ),* *a t t i a t t i bt b ai i      

[0,2 ] ( ( ) = )*t M a t a t 

and we have the following components of the vector potential: 

= , = ,, ,4 4
d di iA AS Sx i y iR Ri ii i

 
 
 

 

= ,, 4
diA Sz i Ri i







where = ( )R R QPi i  (Figure 3).

Therefore 

= ( ( )sin( ) cos( )) ,  = ( ( )cos( ) sin( )) ,  = ,* *d a t t i t i dt d a t t i t i dt d bdt             

2 2 2= ( ) 2 ( ) cos( ) ( )* *R r a t a t r t i z bti       

and 

( ( )sin( ) cos( ))2 *= ,0, 4
a t t i t i dtMiAx i Ri

 


  
 



( ( )cos( ) sin( ))2 *= ,0, 4
a t t i t i dtMiAy i Ri

 


  




2= .0, 4
b dtMiAz i Ri







The vector components of the velocity fi eld (radial, axial, 
azimuthal) induced by the spiral vortex curves are in the form

, ,= ,,

1 1 ,= ( ), ,

, ,= ,,

A Ai z ivr i z r
Ar iv rAz i ir r r

A Ar i z iv i z r




 















 
 

 
 

 
 


 

              (1)

where

( ( )sin( ( )) cos( ( )))2 *= cos( ) sin( ) = ,0, , , 4
a t t t dtMiA A Ar i x i y i Ri

  



 



Figure 2: The surface of the cylinder with circular vortex lines.

Figure 3: Spiral vortices on the cone with   0.1, Z = 2 .
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( ( )cos( ( )) sin( ( )))2 *= sin( ) cos( ) = ,0, , , 4
a t t t dtMiA A Ai x i y i Ri

   


  


( = )t i   

are the radial and azimuthal components of vector potentials.

Then from the partial derivatives

( )cos( ( )) ( ) sin( ( ))* *= , = , = ,
r a t t a t r tR R Rz bti i i

r R z R Ri i i

 


  
  

follows 

12= [( )( ( )cos( ( )) sin( ( ))) ( )sin( ( ))] ,0, * *34
Miv z bt a t t t ba t t dtr i Ri

   



   

 
                  (2)

12= [ ( )( ( ) cos( ( ))) sin( ( ))] ,0, * *34
Miv a t a t r t r t dtz i Ri

  



  

 
                   (3)

12= [ ( ( )cos( ( ))) ( )( ( )sin( ( )) cos( ( )))] .0, * *34
Miv b r a t t z bt a t t t dti Ri

    


    

For  = 0 and for the symmetrical properties respect 

to z=z/2 follows that for the all components of velocity 

( , / 2 , ) = ( , / 2 , ).v r Z z v r Z zi i  

If r=0, then 

2( )2 *(0, ) = 0, 2 2 1.54 ( ( ) ( ) )*

a t dtMiv zz i a t z bt






 

               (4)

or 
2 2

(0, ) = ,2, 34 ( )
q dqaiv z a Mz i R q


 




Where

2 2 2 2 2 2( ) = ,  = , = 2 , = ,  = .1 1 1 1 0 1 0 1 0
zR q a b q c q a b z b b z c b z a
b

     

Therefore, from [24]: 

2 22 2 1 1 2 1 1(0, ) = [, 4 ( ) ( )1 1 2 1
2 ( ) ( ) / 21 2 1 2 1ln ],

( ) ( ) ( ) / 21 1 1 1

d a a b d a a biv zz i c d R a d R a

c R a c a b
c c R a c a b










 
 

 

 
                (5)

Where

2 2 2 2= 2 ,  = 4 ,  = ( ).2 1 0 2 1a a M d b z d d b  

If =0, then 

(0, ) = [ ],, 2 2 2 2 2( )

M z Z ziv zz i Z a z a Z z

 
  

            (6)

and the maximal value of velocity is 

(0, / 2) =, 22 1 ( / (2 ))

Miv Zz i
a Z a




               (7)

by z=Z/2.

The minimal value we have in the form 

(0,0) = (0, ) =, , 22 1 ( / )

Miv v Zz i z i
a Z a




            (8)

By z=0 and z=Z 

The averaged value of the axial component of the velocity 
fi eld in the axes of the cylinder (r=0) is 

1= (0, ) .0, ,
Zv v z dzav i z iZ                  (9)

The average value =0, r=0 is 

2= ., 2 21 1 ( / )

Mivav i a Z a



 
              (10)

From I. Rechenberg [1] ( =0) in the middle point of fi nite 
vortex spool (z=Z/2) with the length Z the axial component of 
one vortex thread is 

= ( )sin(arctan( ))Ziv ctgmax D D





              (11)

where

 is the rise of vortex thread angles (=arctan()) and D = 2a 
is the diameter of the vortex spool.

For the minimal value of velocity ( in the points z=0 und 
z=Z) [1]: 

= ( )sin(arctan( )).
2

Ziv ctgmin D a





              (12)

We have equal values of vmax from (11) and from (7) using

1sin(arctan( )) = , = ,  ( ) = = .
21

y Z DMy y ctg
D Zy

  


The average value (10) for =0 is in the following form 

= ( ) ,
/ 1

iv ctgav D a Z


 


               (13)

where = sin(arctan( ))Z
a

 .

In the formulas parameters M and Z are depending: 

= , = tan( ).ZM
D

 

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Therefore from (4) (13) for the velocity components (v,vz,v) 
and the azimuthal component of the vector potential A 

induced by N discrete vortex are 

= , = , = , = ., , , ,=1 =1 =1 =1

N N N N
v v v v v v A Azr r i z i i ii i i i                  (14)

Integrals are with the trapezoid formulas calculated.

If the intensity i of N - the spiral vortex Si is equal , then 
from (6) - (12) follows: 

1(0, / 2) = ,
21 ( / )

NMv Zz D Z D




              (15)

1(0,0) = (0, ) = ,
21 ( / )

NMv v Zz z D Z a




              (16)

= ( )sin(arctan( )),N Hv ctgmax D D



              (17)

= ( )sin(arctan( )),
2
N Hv ctgmin D a



               (18)

where N - the number of vortex threads, H=Z- and the height 
of the vortex spool (in building synonym of the length) are.

For the averaged value of velocity, (=0) we have the 
formula 

2= ,
21 1 ( / )

NMvav D Z a



 
              (19)

or 

= ( ),
/ 1

Nv ctgav D a H
 

 



               (20)

where = sin(arctan( )).H
a



If the averaged value vav is known, then it can be calculated 
from (19) also the dimensionless length = Zy

a
 in the following 

form 

,2= 2 1
y 

 

where 

= ( ) / ( ).Nctg Dvav  

An example, if 
2 0= 6.0319( ), =10 ( ), = 0.25( ),m C D m
s

  

=1, = 30( ),mN vav s  then  = 1.452 and y = 2.62, z=0.3275(m). 

The corresponding formulas (15, 17); (16,18), and (19, 20) 

are identical, but from (15),(16), and (19) follows, that the 

velocity depending on the parameter MN is, where = .HM
D

From (15, 16) and (19) we can fi nd the corresponding 

multiplicators by NM
D

  calculating (Table 1):

1 1= , = ,1 22 21 ( / ) 1 ( / )
R R

Z D Z a 

and 

2= .3 21 1 ( / )
R

Z a 

Calculation of the velocity fi eld for the circular vortex lines

For the circular vortex lines:

= cos , = sin , = , = sin ,a a z d a di i i i       

= cos , = 0d a d di   

and from axially-symmetric condition follows that by  = 0 
is Ax, i = Az,i = 0 and 

= = ( , ) = ,, , 4
ai iA A A r z Iy i i i i 



where 

cos2= .0 2 2 2( ) 2 cos

dIi
z z a r a ri i i

 




   

The integral i is equal [25]

2(1 2 ) 2 2 2/2 sin= = [( ) ( ) ( )],0 2 2 2 2(( ) ( ) ) 1 sin

t dtI k K k E ki i i ik kra i iz z r a k t ii i i

   
   

where

2 2= ( ) / 2, = 2 / , = ( ) ( ) ,t k ar c c a r z zi i i i i    

/2( ) = 0 2 21 sin

dtK k
k t





is the total elliptical integral of the fi rst kind,

/2 2 2( ) = 1 sin0E k k tdt 

is the total elliptical integral of the second kind.

Therefore the azimuthal component of vector potential Ai 
induced by a circular vortex line Li with intensity , and radius 
ai is 

Table 1: Multiplicators of the velocity for vortexes by =1.4Z
a

.

 N R4 (0) R4 (Z / 2) R4 (Z) R5 R1 R2 R3

 1 0.94 0.71 0.26 0.69 0.82 0.58 0.74

2 1.74 1.59 0.62 1.46 1.64 1.16 1.47

3 2.37 2.58 1.09 2.27 2.46 1.74 2.21

4 2.85 3.56 1.72 3.09 3.28 2.32 2.94

5 3.20 4.44 2.52 3.85 4.10 2.91 3.68

6 3.47 5.16 3.47 4.55 4.92 3.48 4.41



101

https://www.mathematicsgroup.us/journals/annals-of-mathematics-and-physics

Citation: Kalis H, Kangro I, Aboltins A (2024) Mathematical modeling of velocity field induced by the vortex. Ann Math Phys 7(1): 096-106. 
DOI: https://dx.doi.org/10.17352/amp.000113

2 2( , ) = [( ) ( ) ( )].
2

ai iA r z k K k E ki i i ir k ki i


 

The vectorial components of the velocity fi eld (the radial 
and axial components) induced by the vortex line Li are 

1= , = ( )., ,
Aiv v rAr i z i iz r r
 
 

               (21)

or 

2 2 2( )
( , ) = [ ( ) ( )],, 2 22 ( ) ( )

z z a r z zi i i iv r z E k K kr i i ir c a r z zi i i

    


  

      (22)

2 2 2( )
( , ) = [ ( ) ( )]., 2 22 ( ) ( )

a r z zi i iv r z K k E kz i i ic a r z zi i i

   


  

        (23)

If r = 0 then 

2
(0, ) = ., 2 2 1.52 ( ( ) )

ai iv zz i a z zi i



                (24)

This component of vectors has the maximal value =, 2
ivz i a


 

by z=zi, ai=a. 

By z=zi+Z/2 we have 

2
= <, 2 22 2 2 2/ 42 / 4 2 / 4

ai ivz i a Za Z a Z

 


 

this is the value of the component of velocity induced by a 
spiral vortex (=0).

If z=Z/2, ai=a then from (24) follows

1(0, / 2) = ., 2 1.5(1 (( / 2 ) / ) )
iv Zz i D Z z ai



 
           (25)

For the averaged value of the velocity we have 

( ) / /
= ( )., 2 21 (( ) / ) 1 ( / )

Z z a z aai i ivav i D Z Z z a z ai i

 


  
          (26)

If zi = Z/2, then 

1= ., 21 ( / )
ivav i D Z D





The summary velocity fi eld (vr,vz) and the vector potential 
A induced by N discrete vortex lines we obtained in the form 
(14). The hydrodynamic stream function  = (r,z) for velocity 
components

1 1= ,  = ,v vr rr z r r
  
  from (21) is ( , ) = ( , ).r z rA r z 

The amount of fl ow through the cross-section [z=z0,0<r<a0] 
is 

20( , ) = ( , ) = 2 ( , ) = 2 ( , ).000 0 0 0 0 0 0 0
a

Q a z v r z rdr d a A a z a zz
    

The total amount of fl ow through cross cylindrical domain 

[0<z<Z,0<r<a0]is 

( ) = ( , ) = 2 ( , ) .0 00 0 0
Z ZQ a Q a z dz a z dzt   

For the circular vortex line, if / = 0.2 , =1, , 6,z a i i N Ni   we 

can calculate the following multiplicators by the factor :
D


2 1.5( ) = (1 (( / 2 ) / ) )4 =1

N
R Z Z z aii

 

for (25),

( ) / /
= ( )5 2 2=1 1 (( ) / ) 1 ( / )

Z z a z aNa i iR
Z i Z z a z ai i




  

for (26).

An example, if Z/a = 1.4 then we can the multiplicators 

R4((0), R4(Z/2),R4(Z),R5 for the circular vortex lines and 

R1,R2,R3 for the spiral vortexes, by the factor 
M
D


 in the form 

R1*N R2*N R3*N calculated (Table 1).

In the following calculations we use the dimensionless form 
scaling all the lengths to r0 = a (the inlet radius of the tube), 

the axial vz and radial vr velocity to 0= ,0 2 0
v

r


 the azimuthal 

components of vector potential A to 0=0 2
A




, the stream 

function  to 0 =A0r0 and the total amount of fl ow Q to Q0= 0r0. 

Here 0 is dimensional scaling of vortex intensity , =1, .i Ni

The fl ow fi eld induced by linear vortex lines in a channel

Unlike our previous papers [20,21] here we additionally 
consider the chain of linear vortex lines in the plane channel. 

For symmetry-conditions, | =1)
vx
yy




 we consider half the plane 
channel y  [0,1].

In the plane, y=0 we have the slip conditions vx=vy=0 for the 
velocity vectors of viscous incompressible liquid.

The fl ow in the channel is given by a fi xed amount of fl ow 

through a cross-section of the half-channel 1= | .0 =0Q v dyx x

If L=∞, then vx =u(y),vy = 0 we have the Puaseil fl ow u = 
Q(3y-1.5y2) - the solution of Navier-Stokes equation in the 

channel Ωx,y.

The wall y=0 of the channel is placed in a linear chain of 
vortexes with the axis transfer of the (x,y) plane. The one 
linear vortex line in the point (xk,yk)) creates the following 
components of velocity: 

= , = ,2 22 2
y y x xk k k kv vx y
R R 

   
                           (27)
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where 2 2 2= ( ) ( ) .R x x y yk k  

In the center of this point-wise vortex, the velocity fi eld 
is infi nite therefore we consider the vortex line with the fi nite 
cross-section

the circle with radius a. In this case the expressions (27) are 
valid when R≥a. but for R<a we have 

= ( ), = ( ).2 22 2
k kv y y v x xx yk ka a 

 
                (28)

Some numerical results and discussion

The fl ow in the channel

We consider the channel with fi nite length L = 2.5, Puaseil 
fl ow with Q=3 and three wise of the chain of vortexes:

1) the main chain with coordinates and radius of the linear 
vortex 

= 0.2 ( 1)0.4, = 2 , =1,2,3,4,5,6, = 0.05,x k y a k ak k              (29)

rotate clockwise with the intensity 1,

2) the second chain with coordinates and radius of the 
linear vortex 

= 0.4 ( 1)0.4, = 2 , =1,2,3,4,5, = 0.025,1 1x k y a k ak k               (30)

rotate opposite clockwise with the intensity 2,

3) the thread chain with coordinates and radius of the linear 
vortex 

= 0.3 ( 1)0.4, = 2 , =1,2,3,4,5, = 0.05, = 0.025,1 1x k y a a k a ak k    

                   (31)

rotate opposite clockwise with the intensity 3.

For the pointwise vortexes line (29) outside the channel (yk 
= -0.025) 1 = -6 we have the following results: mV = 5.9895, 
mX = 1.00, mY = 0. 

For the Karman chain [25] of vortexes (preliminary vortexes 

line and (30) ( = 0.05, = 6)2yk    we have mV = 3.9790, mX = 
0.20, mY = 0.

In the following Table 2 can see the amount ( ),Q  maximal 
value of velocity u,(mv) with the coordinates (mX,mY) depending 
on the vortex intensity 1, 2, 3

The circular vortexes lines

The basis for the calculations of N circular vortex lines 

, =1,L i Ni  are N≤ 6 chosen, which are arranged in the axial 
direction at the points with the following dimensionless 

coordinates ( = 0.2 , = ), =1, .z i r a i Ni i i

The dimensionless radius of the circular vortex lines ai is 

considered in three forms (the sequence a = [a1, a2, a3, a4, a5, 
a6,]):

1. the constant sequence( radius of the cylinder) ac = 
[1,1,1,1,1,1],

2. the monotonous increasing sequence ain = 
[.75,.80,.85,.90,.95,1.0],

3. the monotonous decreasing sequence ad = 
[1.0,.95,.90,.85,.75],

The results of numerical experiments for dimensionless 

values vr,vz,,Qt was obtained of different dimensionless 

intensity of vortex lines 

= = 6; 3; 2;1;0.5,  and = / = 2, = 0.7.0 02 0
i l Z r ai 


   




The summary intensity of absolute values is equal to 6.

The velocity fi eld is calculated on the uniform grid (nr×nz) 
by the steps h1=h2=0.1 in the r,z directions.

The numerical results show that the velocity fi eld induced 
by circular vortex lines is concentrated inside the cylinder. The 
results depend on the arrangement and the radius of vortex 
lines ai.

Typical results of calculations are the dimensionless velocity 
fi eld and the distribution of stream function in the cylinder. 
We can see the velocity formation depends on the arrangement 
of vortice lines with coordinates zj=[z1,z2,z3,z4,z5,z6], and of the 
radii ai. 

If >0i  then all vortices move in the positive direction of 

Oz axis (vz>0), but the radii of vortex lines to stay a different 
way (for vr<0 the radius is decreasing and for vr>0 the radius 
is increasing).

We obtain the dimensionless values of 

[ , ],  , ,..v v v vz Qr r max max max tr min 

for zj = [0.2,0.4,0.6,0.8,1.0,1.2] and for different radius of 
vortex lines ai and sequence of intensity gj=[g1,g2,g3,g4,g5,g6] the 
following results:

Table 2: The dependence of fl ow velocity on the intensity of the vortexes.

 Γ1 Γ2 Γ3 Q mV mX mY 

 0 0 0 3.00 4.500 0.00 1.00

-6 3 3 3.97 18.19 2.20 0.15

-6 4 4 3.46 22.90 0.30 0.10

-6 3 0 4.62 18.36 0.20 0.15

-6 2 2 4.49 18.63 2.20 0.15

-6 1 1 5.00 19.08 2.20 o.15

-6 1 0 5.22 19.14 0.20 0.15

-6 0 1 5.30 19.47 2.20 0.15

-6 0 0 5.52 19.86 1.00 0.15
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1. The radii are constant ac = [1,1,1,1,1,1]

1.1 The intensity of the one vortex line L3 is = 6, =1:3 N

vr(-5.9,5.9), vzmax = 18.85, max = 3.25,

vr = 0 if z=z3 = 0.6 and vr>0 if z>z3, therefore the radius of the 
vortex increased [26];

1.2 The intensity of the one vortex line L3 is = 6, =13 N   
(in the opposite direction):

vr(-5.9,5.9), vzmax = -18.85, max = - 3.25,

the vortex moves in the negative direction of the Oz axes 
(vz<0), vr = 0 if z=z3 = 0.6 and vr > 0 if z<z3, therefore the radius 
of the vortex also increases [26];

1.3 The intensity of the two vortex lines L3,L4 are 

= 3, = 3, = 2:3 4 N  

vr(-5.7,5.7), vzmax = 18.57, max = 3.17,

the vortexes move in the positive direction of Oz axes 
(vz>0), vr = 0 if z=(z3+z4)/2=0.7 and vr(a0,z3) = -2.46, vr(a0,z4) = 
4.37, therefore the radius of the fi rst vortex lines L3 decreased, 
but for the second vortex lines L4 increased and the fi rst vortex 
can be move through the second vortex [26];

1.4 The intensity of the two vortex lines L3,L4 are 

= 3, = 3, = 2:3 4 N   

vr(-2.9,0.64), vz(-3.0,3.0), (-0.32,0.32),

vz = 0 if z = 0.7 and vz(a0,z3)=-1.72, vz(a0,z4) = 2.76, therefore 

the fi rst vortex moves to the negative direction, but the second 
to the positive direction of Oz axes and the radii of the vortexes 
decreased (this case is in [26] considered);

1.5 The intensity of the two vortex lines L3,L4 are 

= 3, = 3, = 2:3 4 N   

vr(-0.64,2.9), vz(-3.0,3.0),  (-0.32,0.32),

vz = 0 if z = 0.7 and vz(a0,z3)=1.72, vz(a0,z4) = -2.76, the fi rst 

vortex moves to the positive direction, but the second to the 
negative direction of Oz axes and the radius of the vortexes 
increases [26];

1.6 The intensity of the three vortex lines L1,L3,L5 are 

= 2, = 2, = 2, = 3:51 3 N    

vr(-4.1,4.1), vzmax = 16.34, max = 2.63,

vr = 0 if z=z3 = 0.6 and vz(a0,z1)=15.92, vz(a0,z3)=16.16, 

vz(a0,z5)=15.92, vr(a0,z1)=-3.8, vr(a0,z5)= 1.6, the vortexes move 

in the positive direction of Oz axis and the radius of the fi rst 
vortex decreased, but of the third vortex increased;

1.7 The intensity of the three vortex lines 
1 3 5, ,L L L  are 

1 3 5= 2, =2, = 2, =3:N      

vr(-1.6,1.6), vzmin = -5.83, min = -0.74,

vr = 0 if z=z3=0.6, z=0.1, z=1.1 and vz(a0,z1)=-5.67, 

vz(a0,z3)=-2.42, vz(a0,z5)=-3.56, vr(a0,z1)=-0.77, vr(a0,z5)=0.77, 

the vortexes move in the negative direction of Oz axis and the 
radius of the fi rst vortex decreased, but of the third vortex 
increased;

1.8 The intensity of the three vortex lines L1,L3,L5 are 

= 2, = 2, = 2, = 3:51 3 N     

vr(-1.6,1.6), vz.max = -5.83, max = 0.74,

vr = 0 if z=z3=0.6, and vz(a0,z1)=5.67, vz(a0,z3)=1.97, 

vz(a0,z5)=5.67, vr(a0,z1)=0.77, vr(a0,z5)=-0.77, the vortexes move 

in the positive direction of Oz axis and the radius of the fi rst 
vortex increased, but of the third vortex decreased;

1.9 The intensity of the three vortex lines L1,L3,L5 are 

= 2, = 2, = 2, = 3:51 3 N     

vr(-4.9,2.6), vz(-1.75,11.1), (-0.10,1.45),

vr = 0 if z= 0.9 and vz(a0,z1)=-0.64, vz(a0,z3)=8.28, 

vz(a0,z5)=10.89, vr(a0,z1)=-3.17, vr(a0,z3)=-3.95, vr(a0,z5)= 0.77, 

the two vortexes L3,L5 move in the positive direction, but the 
fi rst in the negative direction of Oz axis and the radii of the two 
vortexes L1,L3 are decreased, but of the third vortex increased;

1.10 The intensity of the three vortex lines L1,L3,L5 are 

= 2, = 2, = 2, = 3:51 3 N     

vr(-2.6,4.9), vz(-1.75,11.1), (-0.10,1.45),

vr = 0 if z = 0.3 and vz(a0,z1)= 10.89, vz(a0,z3)=8.28, 

vz(a0,z5)=-0.64, vr(a0,z1)=-0.77, vr(a0,z3)= 3.95, vr(a0,z5)= 3.17, the 

two vortexes L1,L3 move in the positive direction, but the vortex 
L5 in the negative direction of Oz axis and the radii of the two 
vortexes L3,L5 are increased, but of the third vortex L1 decreased;

1.11 The intensity of the three vortex lines L1,L3,L5 are 

= 2, = 2, = 2, = 3:51 3 N      

vr(-4.9,2.6), vz(-11.1,1.75), (-1.45,0.10),

vr = 0 if z = 0.3 and vz(a0,z1)= -10.89, vz(a0,z3)=-8.28, 

vz(a0,z5)=0.64, vr(a0,z1)=0.77, vr(a0,z3)=-3.95, vr(a0,z5)= -3.17, 

the two vortexes L1,L3, move in the negative direction, but the 

third in the positive direction of Oz axis and the radii of the two 
vortexes L3,L5 are decreased, but of the fi rst vortex increased.

2. The radii are increasing ain,

2.1 The non-uniform distribution of intensity gj = 
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[2,2,1,.5,.5,0], N=5:

vr(-12.7,7.4), vz.max = 21.15, max = 4.6, Qt = 28.34,

vr = 0 if z = 0.3, the radius of the fi rst vortex decreased, but 
increased the radii of the last four vortexes ;

2.2 The distribution of intensity gj = [2,2,2,0,0,0], N=3:

vr(-13.3,10.02), vz.max = 22.23, max = 4.8, Qt = 28.69,

vr = 0 if z = 0.3, the radius of the fi rst vortex decreased, but 
increased the radii of the last vortex ;

2.3 The distribution of intensity gj = [0,0,3,3,0,0], N=2:

vr(-10.2,9.4), vz.max = 21.14, max = 4.64, Qt = 29.20,

vr = 0 if z = 0.7, the radius of the fi rst vortex decreased, but 
increased the radii of the last vortex ;

2.4 The intensity of the fi rst vortex lines gj = [6,0,0,0,0,0], 
N=1:

vr(-19.2,19.2), vz.max = 25.13, max = 6.47, Qt = 27.10,

vr = 0 if z = 0.2, the radius of the vortex increased;

2.5 The intensity of second vortex lines gj = [0,6,0,0,0,0], 
N=1:

vr(-15.0,15.0), vz.max = 23.56, max = 5.69, Qt = 29.28,

vr = 0 if z = 0.4, the radius of the vortex increased;

2.6 The intensity of third vortex lines gj = [0,0,6,0,0,0], N=1:

vr(-11.8,11.8), vz.max = 22.18, max = 5.11, Qt = 29.69,

vr = 0 if z = 0.3, the radius of the vortex increased;

2.7 The intensity of fourth vortex lines gj = [0,0,0,6,0,0], 
N=1:

vr(-9.6,9.6), vz.max = 20.94, max = 4.66, Qt = 28.72,

vr = 0 if z = 0.3, Hence, the radius of the vortex increased.

3. The uniform distribution of intensity gj = [1,1,1,1,1,1]

3.1 Radii of vortex lines are constant (the sequence ac:

vr(-4.5,4.5), vz.max = 16.21, max = 3.14, Qt = 25.12,

vr = 0 if z = 0.7, the radii of the fi rst three vortexes decreased, 
but of the last three vortexes increased ;

3.2 Radii of vortex lines are ain:

vr(-8.4,4.9), vz.max = 17.98, max = 3.52, Qt = 27.36,

vr = 0 if z = 0.8 the radii of the fi rst three vortexes decreased 
but of the last two vortexes increased;

3.3 Radii of vortex lines are ad:

vr(-4.9,8.4), vz.max = 17.98, max = 3.52, Qt = 27.36,

vr = 0 if z = 0.5 the radii of the fi rst two vortexes decreased 
but increased the radii of the last four vortexes.

4. The distribution of intensity gj = [2,2,.5,.5,.5,.5]

4.1 Radii of vortex lines are ain:

vr(-12.3,6.9), vz.max = 20.19, max = 4.4, Qt = 27.77,

vr = 0 if z = 0.3, the radius of the fi rst vortex decreased but 
increased the radii of the last fi ve vortexes;

4.2 Radii of vortex lines are ad:

vr(-5.7,5.6), vz.max = 17.30, max = 3.4, Qt = 26.0.1,

vr = 0 if z = 0.4, the radius of the fi rst vortex decreased but 
increased the radii of the last four vortexes.

5. The distribution of intensity gj = [.5,.5,.5,.5,.5,2,2]

5.1 Radii of vortex lines are ain:

vr(-5.6,5.8), vz.max = 17.30, max = 3.4, Qt = 26.0.1,

vr = 0 if z = 1.0, the radii of the fi rst four vortexes decreased 
but increased the radius of the last vortex;

5.2 Radii of vortex lines are ad:

vr(-6.8,12.3), vz.max = 20.19, max = 4.4, Qt = 27.7.7,

vr = 0 if z = 1.1, the radii of the fi rst fi ve vortexes decreased, 
but those of the last vortex increased.

6. The distribution of intensity gj = [.5,.5,2,2,.5,.5]

6.1 Radii vortex lines are ain:

vr(-7.4,6.6), vz.max = 19.47, max = 4.0, Qt = 28.28,

vr = 0 if z = 0.7 the radii of the fi rst two vortexes decreased 
but increased the radii of the last four vortexes;

6.2 Radii of vortex lines are ad:

vr(-6.6,7.4), vz.max = 19.47, max = 4.0, Qt = 28.28,

vr = 0 if z = 0.7 the radii of the fi rst two vortexes decreased 
but increased the radii of the last four vortexes.

6.3 The spiral vortexes in the cylinder (=0)

We consider N≤6 spiral vortexes , =1,S i Ni , which started 
from the points (a,0,i2π/N) at the cylinder.

The dimensionless radius of the cylinder a is equal to 1.

All results of the numerical experiments are for the 
dimensionless values A(a0,z,),vz(0,z),Q(z),Qt and parametern 
l=Z/a =0.5;1;1.5;2;3, a0 = 0.7 obtained.

The summary intensity of absolute values is equal to 6.

The azimuthal components of the vector potential are in 
the uniform grid (Nz×N) by the steps hz = l/ Nz, h = 2π/N,(Nz= 
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N = 30) in the r, direction calculed.

The component A(z,)=(r=a0) using the trapezoid formula 
is calculated. Figures show typical results of calculations: 
the dimensionless velocity fi eld and the distribution of the 
azimuthal component of the velocity (r=a0) in the cylinder.

The velocity formation depends on the length / of the 
cylinder.

The maximum of the azimuthal components of vector 

potentials Amax is depending of the intensity parameter = .gi i


We obtain the dimensionless values of vz.max,Qmax,Amax,Qt, 
and for different sequence of intensity gj=[g1,g2,g3,g4,g5,g6] the 
following results: 

1. The length is ι =1.5,

(vz.max = 15.08, Qmax = 24.98, Qt = 33.20)

1. The uniform distribution of the intensity 

gj = [1,1,1,1,1,1], N=6: Amax = 5.68,

the distribution A is uniform in the  direction;

2. The distribution of the intensity is gj = [2,2,1,.5,.5,0], N 
= 5:

Amax = 5.68, the distribution of A is nonuniform in the  
direction;

3. The distribution of the intensity is gj = [2,2,2,.0,0,0], N 
= 3:

Amax = 5.75, the values of A oscillate in the  direction;

4. The distribution of the intensity is gj = [2,1,1,1,1,0], N = 5:

Amax = 6.14, the distribution of A is nonuniform in the  
direction; (the maximal value 6.14 is in the point (0.75,4.2);

5. The distribution of the intensity is gj = [1.5,1.5,1.5,1.5,0,0], 
N = 4:

Amax = 5.68, the values of A weakly oscillate in the  
direction;

6. The distribution of the intensity is gj = [3,3,0,0,0,0], N 
= 2:

Amax = 5.83, the distribution of A is nonuniform in the  
direction with 3 maximums;

7. The distribution of the intensity is gj = [6,0,0,0,0,0], N 
= 1:

Amax = 8.54, the distribution of A is nonuniform in the  
direction with one maximum;

8. The distribution of the intensity is gj = [6,0,0,0,0,0], N = 
1, b=0;

Amax = 8.40, vz.max = 18.85, Qmax = 36.95, Qt = 24.54 the 

distribution A is uniform in the  direction (this is the velocity 
fi eld induced by the circular vortex line (zi = 0)).

2. Different lengths 

1. The distribution of the intensity is gj = [6,0,0,0,0,0], N = 
1:, l=1.

Amax = 8.42, vz.max = 18.29, Qmax = 36.25, Qt = 16.28;

2. The distribution of the intensity is gj = [2,2,1,.5,.5,0], N 
= 5,  =3:

Amax = 5.11, vz.max = 10.46, Qmax = 16.36, Qt = 43.03;

3. The distribution of the intensity is gj = [2,2,1,.5,.5,0], N 
= 5,  =2:

Amax = 6.0386, vz.max = 13.3285, Qmax = 21.4252, Qt = 37.6009,

If N = Nz = M = 50, then Amax = 6.0386, vz.max = 13.3286, Qmax = 
21.4252, Qt = 37.6017;

1. The distribution of the intensity is gj = [2,2,1,.5,.5,0], 
N = 5,  =1:

Amax = 7.35, vz.max = 16.86, Qmax = 29.39, Qt = 26.65,

5. The distribution of the intensity is gj = [2,2,1,.5,.5,0], N 
= 5,  = 5:

Amax = 8.11, vz.max = 18.29, Qmax = 34.25, Qt = 16.28,

6.4 The spiral vortexes in the cones (≠0) 

In this case, we have some results for the behavior of spiral 
vortexes.

1. If 

= 0.125( ), [0.1,1.0]( ),2 0= 6.0319( / ), =1, =10 ( )( = ( ) = 0.1763),  a m Z mm s N C tg   

then from the formulas (14, 18) can be the values 

; ( = 0);  ( = 0.001);  ( = 0.002);  ( = 0.002)( / )1 2 3 4M V V V V m s     

calculated (Table 3).

For 2V  and 3V  the radii by =1Z  decreased from =0.125( )a m  

with 0.080( )m  and 0.034( )m , but for 4V  the radius increased 
with 0.216( )m .

2. If =0.25( )a m , then similar to the formulas (9, 20) 

can be the values 1; ( =0);M V   2( =0.004);V   
3( =0.008);V   

4( = 0.008)( / )V m s  calculated (Table 4).

For v2 and v3 the radii by z=1 decreased from a=0.25(m) 
with 0.16(m) and 0.07(m), but for v4 the radius increased with 
0.43(m).

Conclusion

1. Velocity fi elds of ideal compressible fl uid infl uenced by a 
curved vortex fi eld in a fi nite cylinder, fi nite cone, and 
channel are investigated.
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2. Numerical results show that the maximum axial velocity 
and the total amount of fl ow depend on the connection 
method of producers of vortex energy.

3. The maximal velocity is developed in the case of non-
uniform distribution of vortex intensity and smaller 
radius of vortex lines.

4. The maximal value of the velocity induced by the spiral 
vortexes is in the middle of the cylinder.

5. The behavior of vortex lines in the ideal incompressible 
fl ow depends on the number and the orientation of the 
vortex.

6. The realization of circular vortices inside the pipe at 
the surface accelerates the fl ow speed inside the pipe 
if they rotate clockwise the fl ow depends on the values 
of parameters , ,Re A  and the infl ow mode in the pipe.

7. The calculations are related to specifi c applications of 
vortices in energy [21,23,26,25. 
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Table 3: The velocity Vav by a = 0.125.

 Z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

 M 0.72 1.44 2.17 2.89 3.61 4.33 5.06 5.78 6.50 7.22

 V1 15.3 24.1 29.0 32.0 34.0 35.4 36.5 37.3 37.9 38.5

 V2 15.5 24.6 29.7 32.7 34.8 36.2 37.3 38.2 38.8 39.4

 V3 15.7 25.1 30.3 33.5 35.6 37.1 38.2 39.1 39.8 40.4

V4 14.9 23.3 27.9 30.7 32.6 33.9 34.9 35.7 36.3 36.8

Table 4: The velocity Vav by a = 0.25.

 Z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

 M 0.36 0.72 1.08 1.44 1.80 2.17 2.53 2.89 3.25 3.61

 V1 4.19 7.64 10.2 12.1 13.5 14.5 15.4 16.0 16.6 17.0

 V2 4.27 7.86 10.6 12.6 14.0 15.2 16.0 16.7 17.3 17.8

 V3 4.34 8.10 11.0 13.1 14.6 15.9 16.8 17.6 18.2 18.7

V4 4.06 7.23 9.54 11.2 12.4 13.4 14.1 14.7 15.2 15.6


