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Abstract

Λ-fractional analysis has already been presented as the only fractional analysis conforming with the Differential Topology prerequisites. That is, the Leibniz rule 
and chain rule do not apply to other fractional derivatives; This, according to Differential Topology, makes the defi nition of a differential impossible for these derivatives. 
Therefore, this leaves Λ-fractional analysis the only analysis generating differential geometry necessary to establish the governing laws in physics and mechanics. Hence, 
it is most necessary to use Λ-fractional derivative and Λ-fractional transformation to describe fractional mathematical models. Other fractional “derivatives” are not 
proper derivatives, according to Differential Topology; they are just operators. This fact makes their application to mathematical problems questionable while Λ-derivative 
faces no such problems. Basic Fluid Mechanics equations are studied and revised under the prism of Λ-Fractional Continuum Mechanics (Λ-FCM). Extending the already 
presented principles of Continuum Mechanics in the area of solids into the area of fl uids, the basic Λ-fractional fl uid equations concerning the Navier-Stokes, Euler, and 
Bernoulli fl ows are derived, and the Λ-fractional Darcy’s fl ow in porous media is studied. Since global minimization of the various fi elds is accepted only in the Λ-fractional 
analysis, shocks in the Λ-fractional motion of fl uids are exhibited. 
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Introduction

Fractional derivatives and integrals [1-6] have been applied 
in many fi elds since they are considered more advanced 
mathematical tools for formulating realistic responses to 
various scientifi c problems in Physics and Engineering [7-9]. 
Especially in mechanics, researchers work in disordered (non-
homogeneous) materials with microstructure, Vardoulakis, 
et al. [10], Wyss, et al. [11], have used fractional analysis for 
a better description of the mechanics of porous materials, 
colloidal aggregates, ceramics, etc., since major factors in 
determining materials' deformation are microcracks, voids, 
and material phases. Further viscoelasticity problems have 
been recently formulated by applying Fractional Analysis. 

Generally, those problems demand nonlocal theories. Just 

to satisfy that requirement, gradient strain theories appeared, 
Toupin [12], Mindlin [13], Aifantis [14], and Eringen [15]. In 
these theories, the authors introduced intrinsic material 
lengths that accompany the higher-order derivatives of the 
strain. Many problems have been solved employing those 
theories concerning size effects, lifting various singularities, 
porous materials, Aifantis [14,16,17], Askes & Aifantis [18], and 
Lazopoulos [19,20]. Another nonlocal approach was introduced 
by Kunin [21,22].

There are many studies considering fractional elasticity 
theory, introducing fractional strain, Drapaca, et al [23], 
Carpinteri, et al. [24,25], Di Paola, et al. [26], Atanackovic, et al. 
[27], Agrawal [28], Sumelka [29]. Baleanu and his co-workers 
[30-32] have presented a long list of publications concerning 
various applications of fractional calculus in physics and control 
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theory to solve differential equations and numerical solutions. 
In addition, Tarasov [33,34] has presented a Fractional Vector 
Field theory with applications.

Lazopoulos [35] introduced Fractional derivatives of the 
strain in the strain energy density function in an attempt to 
introduce non-locality in the elastic response of materials. 
Fractional calculus was used by many researchers, not only 
in the fi eld of Mechanics but mainly in Physics and especially 
in Quantum Mechanics, to develop the idea of introducing 
non-locality. The history of fractional calculus is dated to the 
17th century. Particle physics, electromagnetics, mechanics of 
materials, Hydrodynamics, fl uid fl ow, rheology, viscoelasticity, 
optics, electrochemistry and corrosion, and chemical physics 
are some fi elds where fractional calculus has been introduced. 

Nevertheless, the formulation of the various physical 
problems into the context of Fractional Mathematical Analysis 
follows a procedure that might be questionable. Although the 
various laws in Physics have been derived through differentials, 
this is not the case for the well-known fractional derivatives 
which are not related to differentials. Simple substitutions 
of the conventional differentials to fractional ones cannot 
express the realistic behavior of the various physical problems. 
Lately, Lazopoulos [36] proposed the fractional -derivative, 
a modifi cation of the fractional L-derivative, along with the 
conjugate fractional -space, where the fractional -derivative 
behaves with conventional derivative rules. 

Specifi cally, derivatives in Fractional Calculus are merely 
operators and not derivatives since none satisfi es the criteria 
of the differential topology of a derivative, as described in 
Chillingworth [21]. Those criteria are:

1. Linearity      ( ) ( )D af x bg x aDf x bDg x                 (1)

2. Leibniz rule       ( ) ( ) ( )D f x g x Df x g x f x Dg x      
                  (2)

3. Chain rule    ( ) ( ( ) ( )D g f x Dg f x Df x              (3)

This great weakness was deplored single-mindedly in 
the past by various specialists in the fi eld (Samko, et al. [22], 
König, et al. ([23,24]), Cresson, et al. [25]). Serious efforts to 
tackle this grave problem by designing fractional derivatives 
that follow Leibniz’s rule (Jumarie [26,27], Yang [28]) were 
made without success. T herefore, as mentioned above, the 
problem is severe since it forbids the defi nition of a differential 
and, consequently, differential geometry. 

It is repeatedly pointed out in every differential topology 
book (e.g., Gauld, D. [29] p.95) that the Leibniz rule and 
the chain rule are essential to defi ne a differential, tangent 
space, and, consequently, geometry. On the other hand, the 
-fractional derivative is the only proper fractional derivative 
since it follows the differential topology perquisites for defi ning 
a differential in -space.

The theory of -fractional elastic solid mechanics has been 
presented by Lazopoulos [37]. Further, globally stable states 
have been defi ned by Lazopoulos [38]. Those states have been 
defi ned in the expansion of spherical balloons, Lazopoulos [39]. 

The present work deals with the study of fractional fl uid 
fl ow, introducing the -fractional derivative into the various 
fl ows concerning the fractional Navier-Stokes equations and 
the fractional Euler and Bernoulli ones. Furthermore, the 
fractional fl ows are introduced to Darcy’s fl ows, just to study 
the fl ows through porous media. A long list of works concerning 
fractional fl uid dynamics exists [39,40,41]. However, using 
fractional derivatives in conventional fl uid fl ow laws exhibits 
the handicap of having no differentials. Therefore, the novelty 
of this work is to apply a proper, according to Differential 
Topology, fractional derivative (-fractional derivative) to the 
fi eld of hydrodynamics. This would not only defi ne a differential 
but also legitimize the use of this fractional derivative. After a 
brief introduction of the -Fractional derivative and Fractional 
Vector fi eld theory, the fractional fl uid fl ows are studied using 
the -fractional analysis, trying to introduce nonlocal fl uid 
mechanics both in time and space considering inhomogeneities, 
porous, cracks, etc. 

The Λ-fractional derivative 

This chapter presents a brief outline of fractional calculus, 
while the interested reader refers to refs [6-10], for further 
information. The left and right fractional integrals are defi ned 
by, 

1 ( )
( ) ,a 1a( ) ( )

x f s
I f x dsx

x s




   
                (1)4

1 ( )
( ) ,1( ) ( )

b f s
I f x dsx b x s x




   
             (2)5

 is the order of fractional integrals with where (x)=(x-1)! 
with ) Euler’s Gamma function. In addition, the left and 
right Riemann-Liouville (RL) derivatives are defi ned by:

1
( ) ( ( )),a

m
d mRLD f x I f xa x x
dx

 



 
 
 

             (3)6

and

1
( ) ( ( )).

m
d mRLD f x I f xx xb bdx

 


 
 
 
 

              (4)7

Let us point out that for the left fractional integrals and 
derivatives 

 ( ) ( ).RLD f x f xa x a x
                  (5)8

A similar relation is valid for the right RL-fractional 
derivative and right fractional integral. Considering only the 
left space, the -fractional derivative (-FD) has been defi ned 
as

( )
( ) .

RLD f xxD f xa x RLD xa x


 

 
                 (6)9

Recalling the defi nition of the Riemann-Liouville fractional 
derivative, Eq. (3), the -FD is expressed by,
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 

1 ( )
1 ( )

.1 1

d I f xa x
d I f xdx a xD f xa x

d I x d I xa x a x
dx





 




                (7)10 

Further, if 

1 1 and ( ) ( ),X I x F X I f xa x a x
                 (8)11 

the -FD behaves as a conventional derivative in the fractional 
-space (X, F(X)) with local properties. Fractional Differential 
Geometry may be developed as a conventional differential 
geometry in the -fractional space ( X, F(X)). Therefore it 
is a proper derivative in -space. Hence we can transfer a 
mathematical model to -space, solve the problem there, and 
transfer the results back to the initial space.

Indeed, Eq. (8a) yields,

 
2

,22 3 (1 )

x
X



  




   
             (9)12

In addition, Eqs.(8b,9) suggest that:

    1 ( )1 ,
(1 ) ( )

x f s
F x I f x dsx

x s


  

  
  

        (10)13

Inverting Eq.(9) it appears,

    1/(2 )2( 2 3 1 ) ( ),x x X   
              (11)14

Proceeding further to the defi nition of the fractional 
-space, inserting x(X) into Eq.(10), the function F(x) may be 
expressed as a function of X. 

     ,F X F x X                 (12)

It is evident that, in the just presented -fractional 
derivatives, only left fractional integrals and RL fractional 
derivatives were considered. If we were to involve the right 
fractional integrals and RL derivatives, then the -Fractional 
derivatives should be defi ned by

 
1 ( ) ( )

.12

d I f x dF Xa xD f x
dXd I xa x




  


               (13a) 

with 

   
 

 
 

  
1

1
.

2 1

xI f x f sxF x ds F x X
x s




 


  

  

 
  
 

  

                (13b) 

It will be clarifi ed in the application how from the initial 
space (x, f(x)) the fractional -space (X, F(X)) is defi ned. 
Furthermore, the pullback of the results in the initial space 
will also be demonstrated. For simplicity reasons, only the 

left fractional integrals and derivatives will be taken into 
consideration. Nevertheless, applications with symmetric 
space may be found in [21]. 

Geometry in the Λ-fractional space

Just to understand what happens in the -fractional space, 
the geometry of the surface,

z=x2y2, 0<x<1, 0<y<1,                (14)

will be discussed. 

The fractional -space (X, Y, Z) is defi ned by,

 
2

22 3 (1 )

x
X



  




   
             (15)

 
2

22 3 (1 )

y
Y



  




   
            (16)

 
 

1 ( , )1 1 , ( ) ,2 ( ) ( )( 1 )

y x z s t dt
Z I I z x y dsy xb x s y tb

 
  

 

    
  

  

              (17)

ith a=b=0 , Eq.(17) yields,

 
31

22 (3 )

( ).
(4 )








 

 
 

 
 
 
X

Z Y              (18)

For =0.6, the surface Z in the -fractional space is defi ned 
by

Z=0.947X1.714Y1.714 (Figure 1) (19)

and it is shown in Figure 2.

Further, the tangent space of the surface with =0.6, at the 
point X=Y=0.6 is defi ned by,

 
 

     

0.61.714 1.714(0.947 ) 0.6

0.6
0.6  0.6

 
  

 
   

dZ X Y
Z X Y X Y dX

dZ X Y
Y

dY

  

                (20)

and fi nally, the equation of the tangent space in the -fractional 
space, 

Z=0.164+0.469(-0.6)+0.469(-0.6) (Figure 3).            (21)

The corresponding surface in the initial space to the tangent 
plane in the -fractional space is defi ned by,
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    

  

1 12 2 0.6)0 0.81 0 0.810.81

1 1 0.6)   .              0 0.81 0 0.81

dZRL RLx y D D X xy xx y dX

dZRL RLD D Y yy x

z

dY

 

 

     

  





  
    

  
    

 

                (22)

The surface defi ned by Eq.(22) is shown in Figure 4

It seems that the initial surface and the tangent surface 
corresponding to the tangent space at the -space have 
almost a common tangent plane in the initial space since their 
mathematical expressions are different but quite close.

The fractional fi eld theorems

The conventional fi eld theorems are expressed by:

a. Green’s theorem: Let Qx(x,y), Qy(x,y), be smooth real 
functions in a domain Ω, with its boundary a smooth 
closed curve  . Then,

  .
dQdQ yxQ dx Q dy dxdyx y

dy dx
  

 

 
 
 

∬              (23)

+Corollary: When Qx(x,y), Qy(x,y), are derived by a potential 

function (x,y) with , ,
d d

Q Qx y
dx dy

 
  the RHS of 

Eq.(23) becomes zero. That means that the curvilinear 
integral along a closed smooth boundary is zero. 

b. Stoke’s theorem: For a smooth vector fi eld F defi ned 
on a simple surface Ω with the boundary , Stoke’s 
theorem is expressed by, 

 , ( , ).d d  
 

∬F L F S  (24)

where, ( , )   denotes the scalar product. 

c. The Gauss’ (divergence) theorem: For a space region Ω 
with smooth surface boundary  , the volume integral 
of the divergence of a vector fi eld F over Ω is equal to 
the surface integral of F over the boundary  :

 , d d      
F S F  (25)

Although the fi eld theorems are valid in the fractional 
-space, they are not necessarily valid in the initial space. 
Nevertheless, the - space results may be pulled back into the 
initial space. 

The balance principles

Before discussing the general problem of hydrodynamics 
with its specifi c principles, it is pointed out that geometry and, 
consequently, mechanics have meaning in the-fractional 
space. The results of the various analyses in the -fractional 
space are transferred as functions in the initial space. No 
derivatives of the -space have any meaning in the initial 
space as derivatives. However, they may have a meaning as 
functions. 

Almost all balance principles are based on Reynold’s 
transport theorem. Hence the modifi cation of that theorem, 

Figure 1: The surface z.

Figure 2: The surface Z in the Λ- fractional space.

Figure 3: The surface with the tangent space in the Λ-fractional space.

Figure 4: The surface with its tangent surface at the point (x=y=0.8106) at the initial 
space.
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just to conform to fractional analysis is presented. The 
conventional Reynold’s transport theorem is expressed by: 

.
D DA

AdV dV A dSnW W WDT DT
   


V              (26)

For a vector fi eld A applied upon region W with boundary 
∂W and Vn is the normal velocity of the boundary ∂W.

a. The balance of mass: The conventional balance of mass, 
expressing the mass preservation is expressed by:

0
D

RdV
WDT

                (27)

Recalling the fractional Reynold’s Transport Theorem, we 
get:

( ( , ) [ ])
D

RdV R T Div R dVTW WD
   


X V             (28)

Since Eq. (28) is valid for any volume V, the continuity 
equation is:

[ ] 0.R Div RT  V               (29)

where Div is defi ned in the -fractional space. That is the 
continuity equation expressed in fractional form.

b. Balance of linear momentum principle: It is reminded 
that the conventional balance of linear momentum is 
expressed in continuum mechanics by:

D
R V dS R dV

WDT
    

 
V T B               (30)

where V is the velocity, T is the traction on the boundary and 
B is the body force per unit mass. Likewise, that principle in 
fractional form is expressed by:

 ( )
D

R dV R Div dV
DT

  
 

V B T              (31)

Hence the equation of linear motion, expressing the balance 
of linear momentum is defi ned by,

  0
D

Div R R
DT

  
V

T B               (32)

In Eq.(32) the term T is introduced by the pressure P. That 
is affected by adding the term –PI. Therefore Eq.(32) becomes:

  0
d

Div P R R
dT

   
V

T I B               (33)

Following similar steps as in the conventional case, the 
balance of rotational momentum yields the symmetry of the 
Cauchy stress tensor.

First law of thermodynamics 

This law occurs from Eq.(42). Firstly we replace pT I  
with,

,       p ijT I                (34)

Then the equation of conservation of energy, taking 
into consideration the principle of conservation of linear 
momentum, Eq.(33), yields the rate of change of internal 
energy in the -fractional space as the sum of stress power 
plus the heat added by the continuum. The vector C is defi ned 
in the -fractional space is defi ned as the heat fl ux per unit 
area per unit time by conduction and Z is per the radiant heat 
constant unit mass per unit time. Further, The caloric equation 
of state is expressed by e = e(R,T). Finally, the equation of the 
conservation of energy is defi ned by, see Ref. [46 ].

 
2 1 1

.
2

D
e D V B V D C Zj ij i i i i iDT R R

     
 
 
 

V
           (35) 

The various results in the Λ-fractional space should be 
transferred as functions in the initial space.

Navier-stokes equations

The Navier-Stokes Equations consist of the following 
equations:

a) Balance of mass (continuity) Eq.(29).

b) Balance of linear momentum, Eq.(33)

c) The fi rst law of thermodynamics, Eq (35)

d) Constitutive equations

2

2

2

T D Uxx x

T D Vyy y

T D Wzz z

T T D V D Uxy yx x y

T T D U D Wxz zx z x

T T D W D Vyz zy y z

 

 

 







  

  

  

  

  

  

  
  
  

V

V

V

              (36)

e) The kinetic equation of state:

 ,p p                   (37)

f) The Fourier law of heat conduction:

( )k T
  c                 (38)

g) The caloric equation of state:

 ,e e R                (39)
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The system of these sixteen equations contains 16 
unknowns therefore it is determinate. Usually, the studies 
concerning the Newtonian fl uid, are restricted to the equations 
of conservation of mass (29), linear momentum (33), and 
constitutive equations (36). The solution in the -fractional 
space is transferred to the initial space. 

The Euler and Bernoulli equations

The Euler equations occur from Eq.(30) for non-viscous 
fl uid, for which T=. This holds because the Lamé constants , 
and μ are considered zero in this case. Therefore, Eq.(33) takes 
the form:

 .
D

R R Div P
DT

 V B I               (40) 

Let's assume a barotropic condition R=R(P). A pressure 
function may be defi ned as:

 
0

P DP
P R

P R
                 (41)

Moreover, the body force may be described by a potential 
function:

B=- ,                 (42) 

with these two conditions the conservation of linear 
momentum, Eq. (33), becomes:

  .
D

+ R
DT

  V                (43)

If Eq.(43) is integrated along a streamline, the result is the 
Bernoulli equation in the fractional form:

 
2

.
2

U D
R V DX C Ti iDT

                  (44)

Any problem may be solved following the conventional 
way in the -fractional space, however, the results should be 
transferred into the initial space. 

Darcy’s law

Consider a viscous fl uid, fl owing in a straight pipe of a 
constant circular cross-section of inner radius R and cross-
section of 

2A R with perimeter 2 .R   If L is the length 
of the considered segment of the pipe defi ned by positions 
x=0 and x=a, then l=b-. Transferring the length into the 
-fractional space,

2
1

(3 )

l
I xlL







 

 
                 (45)

Denoting Q(X, T) the discharge of the fl uid in the -space, 
continuity of fl ow demands that Q(X, T) be the same at any 
cross-section of the pipe segment in the -space, depending 
only upon time

Q(X,T)=Q(T)                (46)

The cross-sectional velocity of the fl ow in the -space may 
be computed by:

( )
 .

Q DU T
V

A DT
                 (47)

Due to the fl uid’s internal friction, shear stresses  are 
developed, between the fl uid and the inner pipe-wall. Similarly 
to fractional viscoelasticity, the interface friction shear stress 
in circular pipes is equal to:

4 4 ( )
 

DU Tf f
V

R R DT

 
                (48)

Where μf is fl uid viscosity. The friction stresses may be 
substituted by a fi ctitious body force per unit length of the pipe 
in the -fractional space,

( )
8  

DU T
F Vb f DT

                 (49)

The conservation of linear momentum equation in the 
-fractional space yields:

.
2 ( )

,2


   


P D U T
ADX F DX R AVDX R A DXb f fX DT

      (50)

or
.
( )

. 
DU T

F CV C
DT

             (51)

Since, according to Poiseille’s law, F is proportional to the 
mean fl ow velocity

.
( )

. 
DU T

F CV C
DT

                (52)

Furthermore, the coeffi cient c of viscous friction is 
proportional to the fl uid viscosity and inversely proportional to 
the square of the pipe radius:

.2
f

C
R


                  (53)

Thus we obtain the differential equation:

.
2 ( ) ( )

 .2


 



P D U T DU T

R fX DTDT
C              (54)

Considering:

.
2 ( ) ( )

( ) 2 
D U T DU T

J t R f DTD
C

T
              (55)

The governing Eq.(54) becomes:
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( )
P

J t
X


 


                 (56)

For the case that J(t)=J (constant) between the segments 
x=0 and x=l, the fl uid velocity is defi ned by:

2 ( ) ( )
.2

D U T DU T
C J constant

DTDT
                (57)

Solution of Fractional D.E:

In case Δp is the pressure drop from one end to the other of 
the pipe segment with:

   0 0P P A P                 (58a) 

Then the total discharge is defi ned by:

( )
A P

Q AV
c L


               (58b)

Eq.(58b) is the famous Darcy’s law in the -fractional 
space. Transferring the fl ow rate from the -fractional space 
to the initial space, considering the action of two fractional 
variables, with fractional order 1 of time t and 2 of space x, the 
fl ow rate along the pipe is defi ned by,

  1 1
, ) .2 1(

A
q x t x t

c L

  
              (58c)

Fractional fl ow in porous media 

Considering the difference ΔP to the hydrostatic pressure 
we get:

.P R g Hf                    (59)

Then, we may assume that for the wetted area Av (The area 
of the voids), Darcy’s law may be applied with:

( ) .
A PvQ
c L


                 (60)

Assuming that the surface porosity  is equal to volume 
porosity  we get:

.
Vv v

A V


                    (61) 

And thus:

Av                      (62)

For the specifi c fl uid discharge:

.
Q

QA A
                 (63)

we get:

.
QQ Q A AV Q VAA A Av v

     


             (64) 

Hence Darcy’s law becomes:

,
Q P

Q KA A L


                  (65) 

With .K
c


  Finally, Darcy’s law may be generalized by:

1
,   

P f
Q where fA f X K


  


          (66) 

with P: The pore fl uid pressure.

QA: The specifi c fl uid discharge.

K: The permeability of the porous medium.

μf: The viscosity of the fl uid.

Transferring the result into the initial space with fractional 
order 1 of time t and 2 of space x, the specifi c fl ow is defi ned 
by,

     
( , )1 1

, ( )1 11 2( ) 0 0( )1 2

t x Q sd d Aq x t ds dt
dt dx x st


   

     
  

       

                (67)

Fractional fl ow in elastic tubes

Consider a thin elastic tube, at its (unstressed) reference 
placement in the -fractional space, with its inner radius R 
and its thickness Δ<<R. The elastic tube is considered in the 
context of linear elasticity with modulus E. Loading the tube 
with pressure P, its radius increases by ΔR. Hence its cross-
sectional area becomes:

( ) ,2R R                 (68)

and its current radius R R R    is given by:

2R
R R R R p

E
    

 


              (69)

Restricting to the linear elasticity where the changes of the 
radius are infi nitesimal, we get:

0(1 2 ).0 0
R P

A A
E


     

 
             (70)

Therefore the relation between the variable cross-section 
area and the fl uid pressure and cross-section area:

2
1 ,   .0

P R
A A

E


    

  

 
 
 

              (71)

Since mass balance is expressed by:
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0.
A Q 
 

 
                (72) 

Recalling Darcy’s law with:

2,  ,
A P f

Q c
C X A





  



 
 
 

              (73)

or

2
.2

A P
Q

Xf 


 


               (74)

Eliminating the discharge Q, we end up to:

2( )
1

.2

P
A

A X
T Xf 




 
 

              (75)

Since:

0 .~
AA A P P

T P T XK

   
 

   
              (76)

Consequently, Eq. (75) yields:

2 21
(2 ).2 2

P P P
K A K

T X Xf 

  
     

  

 
 
 


            (77)

However, for small changes in pressure, the linear problem 

is considered, resulting in: 

2P P
c ,p 2T X

 


 
           (78)

where:

320 .2
A K R

cp
Eff   

 
 

   


              (79)

Solution of parabolic equation

Following just the same procedure, but for the fractional 
time derivative fi elds, we get the fractional parabolic equation,

2
.2

dP P
cp

dT X





               (80)

Furthermore, the initial condition expresses the constant 
pressure value,

 0 :   ,    0, .0T P P X L                    (81)

Further, at the time = 0+, the pressure at the entry point 
of the tube is increased by ΔP, keeping constant the pressure 
value at the exit point of the tube. Consequently, the boundary 
conditions for T>0 become, 

0,  ,1X P P P Po                  (82)

0., X L P P              (83)

Nondimensionaling the variables we get:

 
2

* * * * ,     0 1 ,  wher e  .
P X T L

P X X and T Tc
P L T co c p

        

                (84) 

Omitting the upper stars the nondimensional governing 
equation of the fractional fl ow becomes,

2
.2

dP P

dT X





               (85)

with the initial condition,

 0 ;  1 ,   0,1X P X                  (86)

and the boundary conditions,

0 , 1  ,  ,1
0

P
X P P

P
 


                   (87)

1,  1.2X P P  

The initial condition for the pressure,

 0 :   ,    0, .T P P X Lo                  (88)

At T = 0+, the pressure at the entry point is increased by Δp 
with constant pressure at the exit point. Hence the boundary 
conditions for T>0 become:

0,     1X P P P Po                   (89)

,  0X L P P 

Non-dimensional variables become:

 
2

* * * * ,     0 1 ,  whe   .re 
P X T L

P X X and T Tc
P L T co c p

        

                 (90)

The non-dimensional equation becomes:

2
.2

P P

T X

 


 
                (91)

With the initial conditions.

 0 :  1 ,    0,T P X L                  (92)

And boundary conditions:

0,  1  ,    , 1
0

P
X P P

P
 


                  (93)

1,  1.X P P  
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Considering fi rst the steady solution:

2
0 0 ( ) ,1 1 22

DP D P
P P P P P X

DT DX
                (94)

and introducing a renormalized pressure:

,
1 2

P P
P

P P







               (95)

from the above formulas occur:

2ˆ ˆ
,  0 1.2

P P
X

T X

 
  

 
              (96)

The initial condition is:

 ˆ 1,  0,  0 1,P H X X T X                    (97)

and the boundary conditions:

ˆ 0, 0, 0  1 .    P T X and X                  (98)

Applying the separation of variables technique for the 
fractional diffusion equation we get:

 ˆ ˆ ˆ( , ) ( ).P X T X X T T             (99)

Following the conventional procedure for the diffusion 
equation, we get:

2ˆ ˆ1 1 2 2ˆ
.

ˆ
DX D T

X DX T DT
                (100) 

Due to the appendix, the solution to the q. (100) is given 
by:

     2ˆ , ( , ).1P X T b Sin n X n Tnn
                (101)

Where:

      
   

12 2
, ( )1 11 . 3 (2 )

kT
n T nk

     

            

  

       

                (102)

For H=X-1, (Appendix)

    1 22ˆ  ,  . 1P Sin n X n Tn
n


 


               (103)

Then, the results may be transferred into the initial space, 
through the transformations,

2 21 2
,   

(3 ) (3 )1 2

x t
X

 

 

 

  
   

             (104) 

     
1 1 ( , )

, ( )1 11 2( ) 0 0( )1 2
 .

t xd d P s
p x t ds dt

dt dx x st


   

     

  

                (105)

On Λ-fractional geodesics with corners

The presented analysis on fractional hydrodynamics 
assumes locally stable fi elds. Nevertheless, -fractional 
analysis is inherently global, and consequently, non-smooth 
fi elds should be accepted. Continuous fi elds with non-smooth 
derivatives may be considered in various fi elds. yielding 
smooth geodesics (fi elds), Abraham & Marsden. Nevertheless, 
continuous fi elds with possible corner conditions are 
acceptable, since only globally stable fi elds with possible non-
smooth geodesics are allowed in the -fractional continuum 
mechanics. The various variational procedures may be globally 
considered with the consideration of the Erdmann-Weierstrass 
conditions, Gelfand & Fomin [42-44]. 

Proceeding to the analysis presented in the preceding 
paragraph, the balance laws, are described in the general form,

      . [ ] 0,


     
 

 
 
 

Vñö ñs dv ñöv n f da ñön ntR R At t
  

             (106)

where  is the surface inside the material body with the 
corners of the geodesics and V(n) is the normal velocity of the 
singular surface. Following Chadwick [45-55], the general 
jump condition is expressed by, 

0,( )V f n    
                 (107)

where 

. .V V v nn                 (108)

The basic jump conditions, corresponding to the basic 
equation concerning the mass, linear momentum, and energy 
conservation are expressed by,

[V]=0,               (109)

[Vv+t(n)]=0,                (110)
1

[ ( . ) . ] 0.( ) ( )2
V v v t v hn n                  (111)

These equations defi ne the shocks in the continuous 
media. In the fractional analysis, those equations should be 
satisfi ed into the -fractional space and the results should be 
transferred into the initial space.

Fractional shocks in elastic tubes

Let us consider a long cylinder fi lled with perfect gas 
and closed at one end by a plane piston. Initially, the gas is 
considered at rest in the -fractional space with pressure P0 
and density R0. If the piston is moving at a constant speed, U 
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determines the speed of propagation of the shock wave in the 
initial space along with the distributions of the gas density and 
pressure. Let us point out that a perfect gas is a compressible 
ideal fl uid the pressure being proportional to Rg where g(>1) is 
a constant.

The shock wave front in the cylinder separates it into 
two parts, the part with the distributed gas and the part with 
stationary gas. With the use of Eq.(108), the basic jumping 
conditions (109-111) are applied to the -fractional space, 
and if the velocity of the gas behind the piston is U, the mass 
balance law is expressed by,

R(Vn-U)=RoVn.                (112)

Further, the linear momentum balance law is expressed by,

Po-P=-RoVnU ,               (113) 

and the energy balance,

 1 1 22 ,
2 1 2 1

Pg g PoV V Un n
g R g Ro

   
 

            (114)

Vn is the local speed of propagation of the shock wave, and 
P and R are the uniform values of the pressure and density 
to the rear of the shock. Following Chadwick [45] the shock 
motion in the -fractional space is defi ned by the equation

with c0=(gPo/Ro)
1/2. 

   1 1 2 2 2 1/21 { 1 }
4 1

,
6

V g U g U cn o            (115)

Finally, the transformation transfers the local shock speed 
to the initial space. 

     
1 1

, ( ) .1 11 2( ) 0 0( )1 2

t x Vd d nv x t ds dtn
dt dx x st

   
     

  

       

             (116) 

Conclusion

Since the preliminary elements have been defi ned (Leibniz 
Fractional Derivative, Fractional Gradient, Fractional Rotation, 
Fractional Divergence, Fractional Circulation, and Fractional 
Gauss’ Theorem), the basic equations of fl uid mechanics are 
reinstated and analyzed. Further, Fractional Darcy’s fl ow was 
studied as an application of the fractional fl ows into porous 
media. Further, the globally stable fl ows generate shocks which 
are described in the context of -fractional analysis. The main 
issue in our case is the experimental validation of the occurring 
equations. 

(Appendix)
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