
150

Citation: Ungar AA (2024) Understanding Lorentz Utilizing Galilei: The Emergence of a Friendly Extended Special Relativity Theory that Admits Relativistic Multi-
Particle Entanglement. Ann Math Phys 7(2): 150-156. DOI: https://dx.doi.org/10.17352/amp.000118

https://dx.doi.org/10.17352/ampDOI: 

M
A

T
H

E
M

A
T

IC
S

 A
N

D 
P

H
Y

S
IC

S
 G

R
O

U
P

2689-7636ISSN: 

Abstract

Special relativity theory stems from the Lorentz transformation of signature (1, 3). The incorporation into special relativity of the Lorentz transformations of 
signature (m, n) for all m, n  N (n = 3 in physical applications) enriches the theory. The resulting enriched special relativity is a friendly extended special relativity 
that admits multi-particle entanglement, as demanded by relativistic quantum mechanics. The Lorentz transformation of signature (m, n) admits a novel physical 
interpretation induced by the intuitively clear interpretation of the Galilei transformation of signature (m, n) for all m, n > 1. In this sense we understand Lorentz 
utilizing Galilei in m temporal and n spatial dimensions, resulting in the emergence of multi-particle entanglement that the enriched special theory of relativity admits. 
Remarkably, it turns out that, for any m, n  N, the group of Lorentz transformations of signature (m, n) is the symmetry group that underlies any multi-particle system 
that consists of m n - dimensional entangled particles.
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Introduction

 Nature organizes itself using the language of symmetries. 
Thus, in particular, the underlying symmetry group by 
which Einstein's special relativity theory can be understood 
is the Lorentz group SOc(1,3) of Lorentz transformations of 
signature (1, 3). A physical system obeys the Lorentz symmetry 
if the relevant laws of physics are invariant under Lorentz 
transformations. Lorentz symmetry is one of the cornerstones 
of modern physics. However, it is known that entanglement 
in quantum mechanics involves Lorentz symmetry violation 
[1-6]. Indeed, several explorers exploit entangled particles to 
observe Lorentz symmetry violation; see, for instance [7-13].

Quantum entanglement [14] was named by Einstein as 
``spooky action at a distance''. It is a physical phenomenon 
that occurs when groups of particles interact in ways such 
that the quantum state of each particle cannot be described 
independently of the others, even when the particles are separated 

by a large distance. Instead, a quantum state must be described 
as a system of particles as a whole.

Understanding entanglement in relativistic settings has 
been a key question in relativistic quantum mechanics. Some 
results show that entanglement is observer-dependent [2]. The 
aim of this review article is, therefore, to present results that 
demonstrate in extended relativistic settings the following: 
For any m, n ∈ N, the Lorentz transformation group SOc(m,n) 
of Lorentz transformations of signature (m, n) is the missing 
symmetry group that underlies any multi-particle system of m 
entangled n-dimensional particles.

A Lorentz boost is a Lorentz transformation without 
rotations. The Lorentz boost Bc(V ) of signature (m, n), m, n ∈ N, 
in m temporal and n spatial dimensions is parametrized by an 
n × m velocity matrix V. It is introduced in Section 2, giving rise 
to the intuitively clear Galilei boost B∞(V ) of signature (m, n) 
in Section 5. The Lorentz boost Bc(V ) and its associated Galilei 
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boost B∞(V ) are related by a novel additive decomposition Bc(V ) 
into the sum of two components: (i) a Galilean component B∞(V 
) and (ii) an entanglement component c−2E(V ). The additive 
decomposition is presented in (16) for m = 1 and n ∈ N, paving 
the road to the presentation of the additive decomposition in 
(18) for all m, n ∈ N.

The additive decomposition enables the counterintuitive 
Lorentz boost of signature (m, n) to be understood utilizing the 
intuitively clear Galilei boost of signature (m, n). The concept 
of understanding Lorentz utilizing Galilei, thus, stems from 
the additive decomposition in (16) and (18).

The resulting idea of understanding Lorentz utilizing Galilei 
suggests that the group SOc(m, n) of all Lorentz transformations 
of signature (m, n) is the symmetry group that underlies any 
multi-particle system of m n dimensional entangled particles, 
for m, n ∈ N. This interpretation, according to which the Lorentz 
group of signature (m, n) m > 1 is the symmetry group of a 
multi-particle system of m n - dimensional particles, is based 
on mathematical structures and analogies with experimentally 
supported results. Hopefully, therefore, this article will 
stimulate a search for experimental support for our physical 
interpretation of the Lorentz group SOc(m, 3) of signatures (m, 
3), for m > 1. Finally, a search for experimental support that 
involves the shifting of energy levels that, according to [10], 
results from quantum entanglement is suggested.

Lorentz boost of signature (m, n): Parametric reali-
zation

 Let Rm,n be a pseudo-Euclidean space of signature (m, n) 
of m temporal dimensions and n spatial dimensions, m, n ∈ N. 
A linear transformation Λ ℝm,n is a Lorentz transformation of 
signature (m, n), or (m, n)-Lorentz transformation, if it leaves 
the squared pseudo norm 

12 2
2=1 =1

m n
t xi ii ic
                      (1)

invariant and can be reached continuously from the identity 
transformation Rm,n. Here c is an arbitrarily fi xed positive 
constant that represents the vacuum speed of light. The group 
of all (m, n)-Lorentz transformations is denoted by SOc(m, n). 
A Lorentz boost of signature (m, n), or (m, n)-Lorentz boost, 
is an (m, n)-Lorentz transformation without rotations. With c 
= 1, the (m, n)-Lorentz transformations are known as proper 
pseudo-orthogonal transformations [15, p.~478].

A novel, unifi ed parametric realization of the set of all 
(m, n)-Lorentz boosts for any m, n ∈ N is discovered in [16], 
obtaining the elegant (m + n) × (m + n) parametric matrix 
representation in (7) as follows:

Let Rn×m be the set of all real n×m matrices and let 
n m n m
c
    be the c-ball of Rn×m given by 

 =  {  :  < }n m n mV V cc
                     (2)

Where ||V|| is the matrix spectral norm of V [17, p.~295], 
[16, Defi nition 5.7]. It should be noted here that in the special 
case when m = 1 the matrix V ∈ Rn×1 can be viewed as a vector 

and, as such, the matrix spectral norm of the matrix V ∈ Rn×1 
and its Euclidean norm coincide.

Let V ∈ Rn×m. Each of the two real symmetric matrices 

 12:=  , ,
 12:=  , ,

L t n nI c VVnnV c

R t m mI c V VmmV c


   


   





                 (3)

exists if and only if n mV c
  [16, Section 5.3]. Here, In is 

the n × n identity matrix, and exponent t denotes transposition.

It is convenient to use the short notation = , ,
L L
V nV c   

and = , ,
R R
V mV c  , noting that c is an arbitrarily fi xed positive 

constant and that the signature parameters (m, n) are recovered 
from the dimensions of the matrix parameter V ∈ Rn×m.

In the special case when m = 1, 1nV c
  is a column vector, 

V tV = V2 < c2, and 
 12 2 1 1= 1 =  = ( =1)R c V mV V


                    (4)

is the Lorentz gamma factor of special relativity. 

Accordingly, R
V  is called the right gamma factor of signature 

(m, n) and L
V  is called the left gamma factor of the signature 

(m, n). Hence, the Lorentz gamma factor γV is the right gamma 
factor of signature (1, n).

Remark (Matrix Division Notation). Let M1 and M2 be two 

matrices such that the inverse, 1
2M
 , of M2 exists. If the two 

matrices satisfy the commuting relation 

 1 1=  ,1 2 2 1M M M M 

then we may adopt the matrix division notation 

  1 11 :=  =  .1 2 2 1
2

M
M M M M

M
 

It is important to note that the left and right gamma factors 
of any signature (m, n), m, n ∈ N, obey the identities [16, Lemma 
5.82] 

2( )1=  2

2( )1=  2

L
L tVI VVnV LIc n V

R
R tVI V VmV RIc m V


 




 



               (5)

for all n mV c
 . Identities (5) will prove useful in 

constructing the additive decomposition (18).

In the special case when m = 1 the second identity in (5) 

descends to the identity that γV obeys, 
2

1 2=  1 (m =  1)2 1
V VV c V








               (6)

for all nV c . Identity (6) will prove useful in constructing 

the additive decomposition (16).

Finally, as shown in [16, Eq.~5.128], for any m, n ∈ N, the 



152

https://www.mathematicsgroup.us/journals/annals-of-mathematics-and-physics

Citation: Ungar AA (2024) Understanding Lorentz Utilizing Galilei: The Emergence of a Friendly Extended Special Relativity Theory that Admits Relativistic Multi-
Particle Entanglement. Ann Math Phys 7(2): 150-156. DOI: https://dx.doi.org/10.17352/amp.000118

set of all (m, n)-Lorentz boosts has the elegant (m+n) × (m+n) 
block matrix representation 

1
2( ) =   SO (m,  n),

R R tVV VcB Vc c
L LVV V

 
 
 
 
 
 

 


 
             (7)

parametrized by the matrix  n mV c
  . The physical 

interpretation of the matrix parameter n mV c
  will be 

revealed in Section 5 utilizing the intuitively clear (m, n)-
Galilei boost that we introduce in that section.

Beautifully, the submatrices of Bc(V ) in (7) illustrate the 
symmetry between m-dimensional time and n-dimensional 
space in terms of the right and left gamma factors. On this 
occasion, it is interesting to note that the right and left gamma 
factors enjoy the commuting relations [16, Eq.~(5.119)] 

=  

=  

=  

=  .

L RV VV V
R t t LV VV V
L t t LVV VVV V
R t t RV V V VV V

 

 

 

 

                 (8)

For any signature (m, n), the matrix Bc(V ), where n mV c
 ,

is a linear transformation that takes a time-space event 

, :=  ( ,     ,  , ,    ,  )1 1
m ntt t x xm n

 
  
 


t
x

                   (9)

to a time-space event 

, :=  ( ,     ,  , ,     ,  )1 1
m ntt t x xm n

 
  
 


    


t
X

                 (10)

 leaving the squared pseudo norm invariant, 

X1 12 2 2 2= ( ) ( ) ,2 2c c
 t x t                 (11)

where ,   m t t   and ,   n x x  .

An elegant, straightforward proof of the result in (11), based 
on the commuting relations in (8), is found in [16, Sect.~5.8]. 
The unifi ed parametrization of the Lorentz (m, n)-boost in 
(7) for any m, n ∈ N, thus, shakes down the underlying matrix 
algebra into elegant and transparent results.

The special case when m = 1

The special case when m = 1 is obvious. In this section, we 
present this special case to pave the road to the general case 
when m ∈ N there is any natural number.

In the special case when m = 1 the (m, n)-Lorentz boost 
(7) descends to the standard (1, n)-Lorentz boost of special 
relativity (where n = 3 in physical applications), which is 

1
2

( ) =  SO (1, n)2 c1
2 1

tVV Vc
B Vc

tVV I VVnV c V

 






 
 
 
 
 
 
 
 






            (12)

where   1 1   =  n n nV c
      is a column vector 

in the ball  1 =  n n
c c
   of the Euclidean n-space Rn, 

 =  { :  < }n nV V cc     , and where γv is the Lorentz gamma 
factor given by (4). The proof that (7) descends to (12) in the 
special case when m = 1 is presented in [16, Eq.~5.173].

In the Galilean limit, c → ∞, the (1, n) -Lorentz boost Bc(V) 
in (12) tends to the (1, n)-Galilei boost B (V), 

1 01( ) =  ( ) =  lim nB V B Vcc V In

 
 
 
 




         (13)

where 0m×n is the m × n zero matrix.

Contrasting the (1, n)-Lorentz boost Bc(V), the (1, n) -Galilei 
boost G∞(V) is intuitively clear. Thus, for instance, for n = 3 and 

3 1= = ( , , )   1 2 3
tV v v v v             (14)

we have the following boost application: 

  

1 0 0 0
1 0 01 1 1 11

( ) =  =  .0 1 02 2 2 22
0 0 13 3 3 33

t t t
x x x v tv

B V x x x v tv

x x x v tv

      
      
      
      
      
      
      

      


 



            (15)

Equation (15) indicates the physical interpretation of the (1, 
3)-Galilei boost B∞(V), according to which it boosts by velocity 
V = v = (v1, v2, v3)

t a single particle in a position x = (x1, x2, x3)
t at 

the time t to the boosted position x + vt.

Owing to Identity (6), the (1, n)-Lorentz boost Bc(V) in (12) 
possesses the remarkable additive decomposition as the sum of 
a Galilean component B∞(V) and an entanglement component 
c−2 E(V) given by 

2
11 0 11( ) =  2

2
1 1

1=  ( ) ( ) SO (1,n)2

tV V V
VnB Vc VV I cn tV VV V VV
V V

B V E V c
c





 
 

 
 
  
  
  

   
  
 


 

 

 

           (16)

1  nV Rc
 . Here the entanglement component (which 

entangles the space and the time of a single boosted particle) 
is c−2E(V ), where 

2
1

( ) :=  .
2

1 1

tV V V
VE V V

tV VV V VV
V V





 
 

 
 
 
 
 
 
  
 



 

            (17)

The additive decomposition (16) of the (1, n)-Lorentz boost 
Bc(V) demonstrates that the effects of a (1, n)-Lorentz boost Bc(V) 
are the sum of Galilean effects, due to the Galilean component 
B∞(V), and of relativistic effects, due to the entanglement 
component c−2E(V ). Furthermore, it demonstrates that the 
relativistic effects of a (1, n) -Lorentz boost are directly 
noticeable only at high speeds owing to the presence of the 
coeffi cient c−2 of E(V) in (16).

The Galilean component of the additive decomposition (16) 
Bc(V) is intuitively clear. Contrastingly, the entanglement part 
of the additive decomposition (16) Bc(V) is counterintuitive, 
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giving rise to relativistic effects like (i) entanglement of time 
and space of a boosted particle; (ii) time dilation; (iii) length 
contraction; (iv) Thomas precession; and (v) particle's energy 
levels.

Being intuitively clear, the Galilean component B∞(V) of the 
additive decomposition (16) Bc(V)imparts the interpretation 
of V. It reveals the physical interpretation of the parameter 

1  nV c
   that parametrizes the boost Bc(V ) ∈ SOc (1, n) as the 

velocity of a boosted particle relative to an inertial observer. In 
this sense, we say that the additive decomposition (16) enables 
understanding Lorentz utilizing Galilei in signature (m, n) for m = 
1 and all n ∈ N.

We now face the task of understanding Lorentz utilizing Galilei 
in signature (m, n) for all m, n ∈ N. To accomplish the task, 
we introduce the intuitively clear (m, n)-Galilei boost for all 
m, n ∈ N. in Section 5. Completing this task will enable us to 
achieve the main goal of this paper, which is to demonstrate 
that the group SOc(m, n) of all (m, n)-Lorentz transformations 
is the symmetry group of multi-particle systems that consist 
of m n-dimensional entangled particles for all m, n ∈ N (n = 3 in 
physical applications).

The (M,N)-Lorentz boost additive decomposition

The (1, n)-Lorentz boost additive decomposition is obtained 
in (16). Analogously, we now obtain the (m, n)-Lorentz boost 
additive decomposition for all m,n ∈ N.

Owing to Identities (5), the (m, n)-Lorentz boost in (7) 
possesses the remarkable additive decomposition as the sum of 
a Galilean component B∞(V) and an entanglement component 
c−2E(V) given by 

1
2( ) =  

2( )

0 1=  2 2 2( ) ( )

1=:  ( ) ( ) SO (m,n)c2

R R tVV VcB Vc
L LVV V

R
t R tV V V VVRII m Vm m n

V I L Lcn t tV VVV V VVL LI In nV V

B V E V
c

 
 
 
 
 
 

 
 
 
  

       
 
  
 

 

 




 
 

 

 

       (18)

for any   n mV c
  .

The importance of the additive decomposition (18) rests on 
the fact that it enables the intuitively clear Galilean component 
B∞(V) to impart interpretation to the counterintuitive (m, n)-
Lorentz boost Bc(V).

The additive decomposition (18) of signature (m, n) for all 
m, n ∈ N extends the additive decomposition (16) of signature 
(m, n) for m = 1 all n ∈ N. It expresses the (m, n)-Lorentz 
boost Bc(V) as the sum of the (m, n)-Galilei boost B∞(V) and an 
entanglement component c−2E(V), where 

0
( ) =  ,

Im m nB V
V In

 
  
 


             (19)

n mV  , is the (m, n) -Galilei boost of signature (m, n) 
parametrized by V. We will fi nd in Section 5 that the (m, n) 

-Galilei boost is intuitively clear and that its matrix parameter 
V is a velocity matrix for all m, n ∈ N. The m columns of V will 
turn out to be, respectively, the m velocities of m particles 
collectively boosted relative to an inertial observer.

The effects of the entanglement component c−2E(V) are 
directly noticeable only at high speeds owing to the presence 
of the coeffi cient c−2 of E(V) in (18). These effects entangle the 
m time and n space coordinates of m entangled n-dimensional 
particles. As such, the effects of the entanglement component 
c−2E(V) are counterintuitive relativistic effects that have to be 
confronted.

We now face the task of demonstrating that the Galilean 
component of the additive decomposition (18) is intuitively 
clear. This, in turn, will enable us to determine the physical 
interpretation of the matrix parameter n mV c

  of the (m, n)-
Lorentz boost, as well as the physical interpretation of the (m, 
n)-Lorentz boost itself. 

Galilei boost of signature (M,N)

In the Galilean limit, c → ∞, the (m, n)-Lorentz boost Bc(V) 
in (7) tends to its associated (m, n)-Galilei boost B∞(V), 

0
( ) =   =:  ( )  SO (m, n),lim

Im m nB V B Vcc V In

 
  
 

  
       (20)

V ∈ Rn×m, noting that  =  lim   
R ImVc    and  =  lim L InVc  .

Here SO∞ (m, n)is the group of all (m, n)-Galilei boosts for any 
m, n ∈ N.

To intuitively understand the (m, n)-Galilei boost B∞(V) in 
(20), we consider its application to time-space coordinates in 
m-time and n-space dimensions.

The application of the (1, 3) -Galilei boost to the time-space 
coordinates of a single particle in a position x = (x1, x2, x3)

t at a 
time t is described in (15).

We now consider the Galilei boost of signature (m, n) for all 
m, n ∈ N, paying special attention to the case when (m, n) = (2, 
3) as an illustrative example.

Let B∞(V ) = B∞(v1,v2) be the Galilei boost of signature (2,3), 
parametrized by the velocity matrix V = (v1 v2), 

 
11 12

3 2= (  ) =   ,1 2 21 22

31 32

v v

V v v

v v

 
 
 
 
 
 
 

v v                (21) 

of two velocity vectors vk = (v1k, v2k, v3k)
t ∈ R3, k = 1, 2. These 

two velocity vectors form the two columns of the velocity 
matrix V, in analogy with (14), where the velocity matrix V has 
a single column v.

Furthermore, let 01
0 02 1

5 2 :=   =  011 12 2
21 22 1 2
31 32

t

t t
T x x t
X

x x

x x

 
 
   
   

           
         

 
 
 



x x

              (22)
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be a 5 × 2 matrix that represents a (2, 3) -particle system. 
It is a multi-particle system consisting of two 3-dimensional 
particles, (tk, xk), k = 1,2, with positions xk = (x1k, x2k, x3k)

t ∈ R3, at 
time tk ∈ R, respectively. In general. An (m, n)-particle system 
is a multi-particle system consisting of m n-dimensional 
particles.

Here 
01 :=  

0 2

t
T

t

 
 
 
 

                (23)

t1,t2 > 0, is a 2×2 diagonal matrix that represents the times t1 
and t2 when two particles are observed at positions x1 and x2 in 
R3, respectively; and 

 
11 12

3 2 :=  =  (  )21 22 1 2

31 32

x x

X x x

x x

 
 
 
 
 
 
 

x x               (24)

is a 3×2 matrix the columns of which represent the positions 
x1, x2 ∈ R3 of two particles at times t1 ,t2 ∈ R, respectively.

Accordingly, the point  5 2 
T
X

 
  
 

   represents a (2, 

3)-particle system consisting of two particles (t1, x1) and (t1, x2) 
with positions x1 and x2 in R3 at times t1 and t2, respectively.

The collective application of the Galilei boost B∞(V ) of 

signature (2, 3) to the pair of particles 
T
X

 
 
 

 in m+n = 2+3 time-

space dimensions yields 

 :=  ( ) ,
TT

B V
XX

   
        




              (25)

which is described in the following chain of equations, 

01 0 0 0 0 1
0 1 0 0 0 00 0 21 1

1 0 00  := ( ) 0  =  11 12 11 122 2
0 1 021 22 21 221 2 1 2
0 0 131 32 31 32

01
0 2

=  111 11 12 2 12

211 2

t

tt t
v v x xt B V t
v v x x
v v x x

t

t

v t x v t x

v t x

                                                 



 
 

 



X X x x

1 22 2 22

311 31 32 2 32

01
=  0 .2

1 11 2 2 2

v t x

v t x v t x

t

t

t t

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
  
 



 

 x v x v

  (26)

Here, B∞(V ) in (25) – (26) is given by (19) with m = 2 and 
n = 3.

The chain of equations (26) describes the application of a 
Galilei boost B∞(V ) of signature (2,3) to collectively boost two 
particles, (t1, x1) and (t2, x2), into the two boosted particles, (t1, x1 

+ v1t1) and (t2, x2 + v2t2), by two 3-dimensional velocity vectors 
v1 = (v11,v21,v31)

t and v2 = (v12,v22,v32)
t in R3. It is important to note 

that the two collectively boosted particles are not entangled in 
the sense that the boost of each boosted particle is independent 
of the boost of the other boosted particle. Interestingly, this 
observation fails when we replace Galilei boosts of signature 

(m, 3), m ≥ 2, with corresponding Lorentz boosts of the same 
signature (m, 3), as we will see in Section 6.

Each of the two particles (t1, x1) and (t1, x1) possesses a one-
dimensional time, t1 ∈ R and t2 ∈ R, respectively. Accordingly, 
the system consisting of the two particles possesses the 
two-dimensional time, (t1, t2) ∈ R2. Each of the two particles 
possesses its clock so that the two-dimensional time of the 
system is measured by two clocks. In general, a multi-particle 
system consisting of m particles possesses an m-dimensional 
time, measured by m clocks, m ∈ N.

The extension of (21) – (26) from signature (2 ,3) to 
signature (m, n), for all m, n ∈ N, is now obvious. The Galilei 
boost B∞(V) of signature (m, n) is parametrized by a velocity 
matrix V ∈ Rn×m of order n × m that consists of m columns, V = (v1 

v2 ... vm) that respectively represent the m velocities v1,v2, . . . ,
vm ∈ Rn of m collectively boosted particles relative to an inertial 
observer. Furthermore, when B∞(V) applied to collectively boost 
m particles in Rn (i) it keeps invariant each of the times tk, k 
= 1, . . . , m of the m particles (tk, xk), that is, tk

′ = tk, and (ii) it 
boosts their positions xk ∈ Rn into the boosted positions xk

′ = xk 

+ vktk ∈ Rn at times tk, respectively. The m collectively boosted 
particles are not entangled in the sense that (i) the boost of 
each boosted particle is independent of the boosts and times 
of the other boosted particles and (ii) the time of each boosted 
particle is independent of the times and boosts of the other 
boosted particles.

A Galilei boost of signature (m, 3), applied collectively to the 
m > 1 particles of an (m, 3)-particle system is thus equivalent to 
m Galilei boosts of signature (1, 3), applied individually to each 
particle of the system. Hence, a Galilei boost of signature (m, 
n), m, n ≥ 2, can be viewed as a Galilei multi-boost acting on 
multi-particle systems. While Galilei multi-boosts involve no 
entanglement, we will see that corresponding Lorentz multi-
boosts accommodate the entanglement of the space and time 
coordinates of multi-particle systems.

The chain of equations (26) for the action of Galilei boosts 
of signature (2, 3) and its obvious extension to the action of 
Galilei boosts of any signature (m, n), m, n ≥ N, demonstrates 
that the extension of the common Galilei boost of signature 
(1 ,3) to Galilei boosts of any signature (m, n) is quite natural 
and intuitively clear. The additive decomposition (18) provides 
a correspondence between Galilei boosts, B∞(V), V ∈ Rn×m, of 
signature (m, n) and Lorentz boosts, Bc(V), n m

cV  , of the 
same signature (m, n). This correspondence indicates that the 
extension of the common Lorentz boost of signature (1, 3) to 
Lorentz boosts of any signature (m, n) is quite natural as well, 
representing Lorentz multi-boosts when m > 1. Yet, unlike 
Lorentz boosts, Galilei boosts of signature (m, n) are intuitively 
clear.

Understanding Lorentz multi-boosts utilizing Ga-
lilei multi-boosts: The emergence of relativistic 
multi-particle entanglement

Following its introduction in Section 5, the (m, n)-Galilei 
multi-boost B∞(V) is intuitively clear for any (m, n) ∈ N. As such, 
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utilizing the additive decomposition (18) imparts interpretation 
to the counterintuitive (m, n)-Lorentz boost. Specifi cally, B∞(V) 
revealed in (18) that the parameter n m

cV   of the (m, n)-
Lorentz boost BC(V) in (7) is a velocity matrix the m columns of 
which are respectively the m velocities of collectively m boosted 
particles relative to an inertial observer.

Accordingly, the interpretation that the (m, n)-Galilei boost 
imparts to the (m, n)-Lorentz boost utilizing the additive 
decomposition (18) is as follows: The (m, n)-Lorentz boost m 
> 1 is a multi-boost that collectively boosts a multi-particle 
system of m n-dimensional particles by respective m velocities, 
which are the m columns of the velocity matrix n m

cV  . In 
this sense, we say that the additive decomposition (18) enables 
understanding Lorentz utilizing Galilei.

Contrasting the intuitively clear Galilean component B∞(V) of 
the additive decomposition (18), the entanglement component 
of the additive decomposition gives rise to counterintuitive 
relativistic effects for any m > 1 and n ∈ N. These relativistic 
effects include (i) relativistic entanglement of the m-temporal 
and n-spatial coordinates of m collectively boosted particles; 
(ii) multi-time dilation; (iii) multi-length contraction; (iv) 
multi-time and space precession; and (v) multi-particle's 
energy levels.

In classical mechanics, the group SO∞(m, 3) of all (m,3) 
-Galilei transformations (including Galilei boosts and rotations) 
is the symmetry group of any multi-particle system consisting 
of m particles. If we understand Lorentz by Galilei utilizing the 
additive decomposition (18), then Galilei imparts to Lorentz 
the following interpretation: In special relativistic mechanics 
the group SOc(m ,3) of all (m, 3) -Lorentz transformations is 
the symmetry group of any multi-particle system consisting 
of m particles.

It is now clear why quantum entanglement involves 
Lorentz symmetry violation in special relativity theory, and 
how to confront the resulting problem. The symmetry group of 
m entangled particles, m > 1, is not the standard Lorentz group 
SOc(m, 3) of special relativity. Rather, the symmetry group of m 
entangled particles, m > 1, is SOc(m, 3).

A suggested search of experimental support for 
enriched special relativity theory

Stems from the Lorentz group SOc(1, 3), special relativity 
theory does not admit particle entanglement. To enable special 
relativity to admit the entanglement of m > 1 particles it is 
necessary to enrich it by incorporating the Lorentz groups 
SOc(m, 3) for all m > 1.

The resulting enriched special relativity theory thus stems 
from the Lorentz groups SOc(m, 3) for all m ∈ N . It is hoped that 
this article will stimulate a search for experimental support for 
the necessity to enrich special relativity theory by incorporating 
the Lorentz groups SOc(m, 3) for all m > 1.

A suggested search for experimental support of our enriched 
special relativity theory follows: The shifting of energy levels 
that results from quantum entanglement, leading to Lorentz 

symmetry violation, is studied in [10]. While the shifting of 
energy levels violates (1, 3)-Lorentz invariance, it perhaps 
obeys (m0, 3)-Lorentz invariance for some m0 > 1. If m0 exists, 
then the (m0, 3)-Lorentz invariance of the shifting of energy 
levels would provide experimental support for our enriched 
special relativity theory. Accordingly, a search for m0 amounts 
to a search for a desired experimental support.

Conclusion

The (m, n)-Lorentz boost Bc(V) in (7) is a Lorentz 
transformation of signature (m, n), m, n ∈ N, without rotations. 
It is a coordinate transformation of m temporal coordinates 
and n spatial coordinates of (m+n)-dimensional spacetime, 
which leaves invariant the squared pseudonorm (1). In the 
special case when m = 1 Bc(V) descends to the common (1, n)-
Lorentz boost of special relativity theory (SRT), where n = 3 in 
physical applications.

In the Newtonian limit, c → ∞, the counterintuitive (m, n)-
Lorentz boost Bc(V) tends to the intuitively clear (m, n)-Galilei 
boost B∞(V) in (20). The (m, n)-Galilei boost turns out to be 
a multi-boost, that is, a boost that boosts simultaneously m 
n-dimensional particles simultaneously.

The (m, n)-Lorentz boosts and the (m, n) -Galilei boosts are 
related by the additive decomposition (16) for m = 1 and (18) for 
m ≥ 1. Employing the additive decomposition, the intuitively 
clear (m, n)-Galilei boost imparts interpretation to the (m, 
n)-Lorentz boost, revealing that the latter, like the former, 
is a multi-boost, simultaneously boosting m n-dimensional 
particles.

Finally, it is clear from the additive decomposition (18) that 
Galilei multi-boosts admit no entanglement while, in contrast, 
Lorentz multi-boosts admit entanglement. Hence, to enable 
SRT to admit entanglement of m 3-dimensional particles it 
seems to be useful to enrich SRT by incorporating into SRT the 
(m, 3)-Lorentz groups for all m > 1. A search for experimental 
support for enriched SRT in terms of the shifting of energy 
levels that result from quantum entanglement is proposed in 
Section 8. 
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