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Abstract

The main goal of current investigation is to present two new g-integral identities for midpoint and trapezoid type inequalities.
Then using these identities, we develop several new quantum estimates for midpoint and trapezoid type inequalities via (o,
m)-convexity. Some special cases of these new inequalities can be turned into quantum midpoint and quantum trapezoid type
inequalities for convex functions, classical midpoint and trapezoid type inequalities for convex functions without having to prove
each one separately. Finally, we discuss how the special means can be used to address newly discovered inequalities.

2010 Mathematics Subject Classification. 26D10, 26D15, 26B25.

Introduction

It is well known that modern investigation, directly or
indirectly, involves the applications of convexity. Due to its
use and significant importance, the concept of convex sets
and hence convex functions is largely generalized in various
directions. The concept of convexity and its variant forms have
played a fundamental role in the development of different fields.
Convex functions are powerful tools for proving a large class of
inequalities. Today the study of convex functions evolved into
abroader theory of functions including quasi-convex functions
[1-3], log convex functions (4], co-ordinated convex functions
[5,6], harmonically convex functions [7], GA-convex functions

[8,9], (o, m) -convex functions [10]. Convexity naturally gives
rise to inequalities, Hermite-Hadamard inequalities is the
fisrst consequence of convex functions. A function §:7—->R
where 7 is an interval in R is called convex, if it satisfies the
inequality

S(or+(1-1w)s) <wF(r) +(1-w)F(s)
where t,5¢7 and weo0,1].

A class of (a,m)-convex functions was introduced by
Mihesan and stated as:

Definition 1 [10] A function S:[O,UZ)—HR is called (o, m)-
convex, if the inequality
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S(mwm(l—m)s)Smas(t)+m(1—m“)3(s)

holds for all ©,s€[0,,), we[0,1],ze[0,1] and me[o0,1].

It is also well known that S is convex if and only if it
satisfies the Hermite-Hadamard's inequality, stated below:

3(01;‘72}3 i J‘;lz&(t)drgg(nl)';g(nz)

2 1

where 3F:3—-R is a convex function and bv,,v,€J with

9, <y, Convexity is mixed with other mathematical concepts
like; optimization [11], time scale [12,13], quantum and post
quantum calculus [14].

On the other hand, several works in the field of g-analysis
are being carried out, beginning with Euler, in order to
achieve mastery in the mathematics that drives quantum
computing. Q-calculus is the connection between physics
and mathematics. It has a wide range of applications in
many fields, e.g., mathematics, including number theory,
combinatorics, orthogonal polynomials, basic hypergeometric
functions, and other disciplines, as well as mechanics, theory
of relativity, and quantum theory [15,16]. g-calculus also has
many applications in quantum information theory, which is
an interdisciplinary area that surrounds computer science,
information theory, philosophy, and cryptography, among
other areas [17, 18]. Euler is the inventor of this significant
branch of mathematics. Newton used the q -parameter in his
work on infinite series. The q -calculus that is known without
limits calculus was presented by Jackson [19] in a systematic
manner. In 1966, Al-Salam [20] introduced a q -analogue of
the q -fractional integrals and q -Riemann-Liouville fractional.
Since then, realted research has been increasing gently. In
particular, in 2013, Tariboon and Ntouyas introduced the left
quantum difference operator and left quantum integral in [21].
In 2020, Bermudo et al. introduced the notion of right quantum
derivative and right quantum integral in [22].

Many integrals have also been investigated using quantum
and post quantum calculus for different types of functions.
For example, in [14,22-30], the authors proved Hermite-
Hadamard integral inequalities and their left-right estimates
for convex and co-ordinated convex functions by using the
quantum derivative and integrals. In [31], the generalized
version of g-integral inequalities was presented by Noor et al.
In [32] Nwaeze et al. proved certain partametrized quantum
integral inequalities for generalized quasi convex functions.
Khan et al.proved Hermite-Hadamard inequality using the
green function in [33]. For convex and co-ordinated convex
functions, Budak et al. [34], Ali et al. [35,36] and Vivas-Cortez
et al. [37] developed new quantum Simpson's and Newton's
type inequalities.For quantum Ostrowski's type inequalities for
convex and co-ordinated convex functions, please refer to [38-
£40].

Inspired by the ongoing studies, we derive some new
inequalities of Midpoint and Trapezoid type inequalities for
(a,m) -convex functions by utilizing quantum calculus. The
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fundamental benefit of these inequalities can be turned into
quantum Midpoint and trapezoid type inequalities for convex
functions [14,41], classical Midpoint for convex functions
[42] and the classical Trapezoid type inequalities for convex
functions [43] without having to prove each one separately.

This paper is summarized as follows: Section 2 provides
a brief overview of the fundamentals of g-calculus as well as
other related studies in this field. In Section 3, we establish
two pivotal identities that play a major role in establishing the
main outcomes of this paper. The Midpoint and Trapezoid type
inequalities for g-differentiable functions via (a, m) -convexity
are presented in section 4 and section 5. The special means are
described in section 6. The connection between the findings
reported here and similar findings in the literature are also
taken into account. Section 7 concludes with some suggestions
for future research.

Preliminaries and definitions of g-calculus

In this section, we first present the definitions and some
properties of quantum integrals. We also mention some well
known inequalities for quantum integrals. Throughout this
paper, let 0<q<1 be a constant.

The g-number or q -analogue of neN is given by

n], = 1-q

=1+q+q° +...+q"".

Jackson derived the q -Jackson integral in [44] from 0 to
Y, as follows:

[25(0)d,e = (1=, Y "5 (0,9")
provided the sum converges absolutely.

The q Jackson integral in a generic interval [v,,n,] was
given by in [19] and defined as follows:

[8()d x = [25()d e - [ "3 ()d, .

o

Definition 2 [21] Let §:J— R be a continuous function and let
te3d.Thenthe % derivative on 3 of § at v is defined as

§(0)-5(qe+(1-q)y,) (1)

e T G B

" DqS(nl) = limHul " DqS(t).

Definition 3 If v, =0 in (1), then we get classical q -derivative of

3(x) at ve3J,given by

- _3(x)-5(qr)
ODqS(t) = Dqg(t) = w

Definition 4 [22] Let §:J— R be a continuous function and let

ve7J.Thenthe q derivativeon 3 of § at v is defined as

0 _5()-3(qe+(1-q)y,)
P3O ey
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D, 5(v,)=lim, . "D,3().

Definition 5 [21] Let §:3—R be a continuous function. Then

the 4, -integralon 7 is defined as
JL§), 4= (-0 -0) 3 4'3(@"e+ (1-q")n,) )
for teJ .If »,=0 in (2), then
[75(w),d o = [ (w)d,,

where J:&(m)dqm is familiar q -definite integral on [0,t]

defined by the expression
[[3(0), 0= [ F0)d,m=(1- @)X q"5(q")-

Moreover, if ce(y,,t) , then the q -integral on J is defined
as

[3(w), o= L‘lg(m)nl d,w- jﬂ‘ls(m)ul d, .

Definition 6 [22] Let §:J—>R be a continuous function. Then
the q™ -integral on 7 is defined as

[%30)2 o= (1-9)o, - 43 (@"s + (1-q"n,) (3)

for ve3.1If y,=1 in (3), then
[3(w)'d o= [ 3(w)d o,

where j;&(m)dqm is familiar q -definite integral on (0,¢]

defined by the expression
[0, 0= [ Fo)d,m=(1- @) X q"5(q")-

Moreover, if ¢<(y,,t), then the q -integral on 7 is defined
as

[(3(w), d o= 5(10), dro- J';S(m)nl d,m.

n [14], Alp et al. proved the corresponding Hermite-Hadamard
inequalities for convex functions by using %, -integrals, as
follows:

Theorem 1 [14] If S:[UI,UZJ—HR be a convex differentiable

function on [01,02] and 0<q<1. Then, %, -Hermite-Hadamard
inequalities

@,+v, |17 ag (v,)+3 (v,
iSon e G

1
Bermudo et al. proved the corresponding Hermite-
Hadamard inequalities for convex functions by using q -
integrals, as follows:
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Theorem 2 [22] If §:[v,,m, ] >R be a convex differentiable

function on ‘:Uunz] and 0<q<1. Then, q"-Hermite-Hadamard
inequalities

v +qy, | 1 2 n <3(Ul)+43(01) (5)
S[ [2], ]_02—01 nl&(m) Ao 2],

From Theorem 1 and Theorem 2, one can write the following
inequalities:

Corollary 1 [22] for any convex function F:[v,,y,]>R and
0<(Q<1, we have

E[QEESUZJ+3[UI[;?2]< ! {”fg(t)nldqunfg(t)“qut}sg(nl)ﬂe(nz)

_n27‘31 0 0y
and
Ul+nz 1 y 9y 0 3 Ul +§ Uz
S[ZJSM{ig(t)nldqt+x{%(t) dqr}s()z().

Theorem 3 If F:[vy,n,]>R is a continious function and

Zey,n,], then the following identities hold:
®,,D, [ 3(), d,r=5(2);

(i) (), dyr=§(2)-F(c) for c < (v,,2).

Lemma 1 [45]For continious functions §,g:[y,,n,] >R, the
following equality true:

'[:g(m)ul D, 3(roy, +(1-1)n,d

_ () (roy, +(1-ro)o,[*
9, —0 |0 v,

f,) [;D,g(w)3(qron, +(1-qu)n, )d .

Key Identities

In this section, we establish two quantum integral identities
using the integration by parts method for quantum integrals to
obtain the main outcomes.

Lemma 2 For a q-differentiable function §:[y,p,]>R with

m,D¢S is continuous and integrable on [n,v,], the following
identity holds:

0

qln, - mnl){ f [zqumnqu%(mnz +m(1-w)y,)d,

+.f%(m - %)mnl DqS(mn2 +m(1- m)nl)dqm
q

_ v, +qmy, 1 0,
g[ 2], }nz-mnl b 8, (©)

Proof. From fundamental properties of quantum integrals,
we have

o

{j{z]“mmn Dqs(mn2 +m(1- m)nl)dqm
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+.[;(m —%)mn Dq&(mn2 +m(1-r)y, )dqm}
(2] !

= L[Z]qmmnquS(mnz +m(1-r)y, )dqm
+I:(m —%)mnl Dq&(mn2 +m(1-ro)y, )dqm

_J'O[Z]q (ro— %)m.,1 DqS(mnz +m(1-ro)y, )dqml

=3,+73, -7,

Using the Lemma 1, we have
.
2
3, = J'O[ J“mmnqug(mnz +m(1-w)y, )d,w

1
_ o Ston, +m(-wy, [Pl 1
y,-my, | n,—my,

- 1 3 v, +qmy,
I:z:'q (Uz - mnl) [ZL

[45(rogy, +m(1-roq)n, ) o

o mnl)I “S(mqnﬁm(l wq)y, )d,ro. (7

Similarly, we have

3, = f:(m —%),,.nl D, 3(roy, + m(1-r)y,)d o

L 5,)+

7‘1 (. —mo)) F(my,)

1
q(n, —my,)

1 ; ISg(mqu+m(1—mq)nl)dqm

y,—m
__q-1

_q(nz—mnl)g(nz) Q(UZ 1)S(mn)

S dp+——t—

~q(n, —my, )2I 86, t+q(n mnl)g(nz) ®

and

B, 1
3, = J‘O[ ]q(mfa)m“l D, F(roy, + m(1-w)y, )d, ro

1 (Uz+qmr]1 1

q[2] (o, -my) ™ 2], 40, —mn) §(mo,)

10 .
Uz—mUII° F(rqy, +m(1-rq)y, )d, . (9)

Thus from (7), (8) and (9), we have

1 v, +qmy
J,+3,-3,= 1)
T, 3 q(UZ _mnl) 5 I:z]q

~qv, -m, )21”23( D, ot

(10)
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and we obtain required equality (6) by multiplying q(y, —my,)
on both sides of (10). Thus, the proof is accomplished.

Remark 1 In Lemma 2, we have
- if we set a=m=1, then we find [14, Lemma 11].

- If we set ¢o=m=1 and later taking q—1-, then we find
[42, Lemma 2.1].

Lemma 3 For a q-differentiable function F:[y,n,]>R with

mnquS is continious and integrable on [v,,9,], the following

equality holds:

" 3y, +q3(my,)
d 2 1
y, —my, I S( )"‘“ [z]q
:%E(p[z]q 1) mnqug(mn2 +m(1-w)y, )d r (12)
q

Proof. From fundamental properties of quantum integral, we
have

J:(l {21} ) ,,, Dy§(ton, +m(1-10)y, )d,ro

+ [2]‘1 Ilg(qmn +m(1-qmw)y,)d, ro
n, —my, 0 2 1/%q

1-[2] w)3(n,
v, —my,

o

__45(,)+§(my) [2 ]
—my, n, =

j (qron, +m(1-qw)y,)d,

@) +3my) [2l 00
T ammw, g0, - mnl)Z §(@™, +m=4""n,)

_a3(,)+3(my)) [2],0-

[zq 3@, +m(1-)n,) - s(ngj

n, —my, q(nl my,)
@) +3my)  [2 [2],a-a
\)Z ~ mr)l + q(nz — m\)l )1 Im‘ll (t)mnl qt q(nz — ml')l) S(Uz)
__80,)+q8(my,) 5 qQ (12)
Cl(Uz _ mnl) q(nz m‘) )2 I g(t)mn T.

and we obtain the required equality (11) by multiplying

Q(Uz[2] ) onboth sides of (12). Thus, the proof is accomplished.

Remark 2 In Lemma 3, we have

- If we set «=m=1, then we find [41, Lemma 3.1].

q—>1

- If we set « =m=1 and later taking limit as , then we

find (43, Lemma 2.1].
Midpoint Type inequalities for (a, m) -convex functions

In this section, we prove Midpoint type inequalities for
differentiable (o, m)-convex functions.
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Theorem 4 Under the assumption of Lemma 2, if |mn1 D3 s

(a,m) convex function over [9,,9,] then we have the following
midpoint type inequality:

v, +qmy, ) d
S[ [2], ] v, - mnI 8, 4ot

<q, —my,)[(A,(Q) + A, (@)1, D,5(v,)]

+m(4,(@)+ A, @), D3w,)I], (13)

where

A@= ] e o

(2] [@+2],

Az(q):j "m(l m)dm

[] [2]“[ +2],

1 1

A = 11 “ l— ]d =
(@ f[ o {q © ) laet], [ava],

2 q
1
q [2]:“ [a+1]

1
+
o [2]7[e2],

1 1 1

A ()= I (5“"}(1 ) dyro= [2] “qfar], a2l

1
q[z]‘“1 la+1], [2];”2 [a+2], ’

Proof. By taking modulus in (6), and using (a, m) -convexity of

|mnl D3|, we have

v, +qmy 1 "
2 1| d
5[ B Jm J 3COm 2

1

<q(y, - m‘%){[ ]qml Dqg(mnz+m(1—m)nl)|dqm

+,[1‘ (%_m]m Dqg(mnz+m(l—m)nl)|dqm]
2, !

< J-O[z]q et |mn1 DQS(UQ_) | dqm"'J.O[Z]q m(m—maﬂ)'mnl Dq@(\)lﬂdqm

o (‘me}mh D,5(0)ldo

g (2w, D30 ldye

z]q

=q(v, -mv,)| A,(@)],, D,3(,)1+m A, (@I, D3,

https://www.mathematicsgroup.us/journals/annals-of-mathematics-and-physics 8

+A,@1,, DF0,)1+mA, @I, D30,

=q(n, -my,)[(A,(@)+ A, (@)1, Dy(,)1+m(A,(q)+A, (@)1, D,Sv,)I]-
Thus, the proof is accomplished.

Remark 3 In Theorem 4, we have
- If we set s=m=1, then we find [14, Theorem 13].

- If we set «=m=1 and later taking the limit as q—1-,
then we find [42, Theorem 2.2].

Theorem 5 Under the assumption of Lemma 2, If
|mnl Dqg(r) [',r>1 is (a, m) convex function over [v,,9,]1, then we

have the following midpoint type inequality:

v, +qmy n
3| =2 L S(x )m" dr
[ [ZL } Imn

_%?”%M@MDmmmm@MDmWY
2 r

A, @, DF6)F m A @, Dq%(nl)l'):} (14)

Proof. By taking modulus in (6), and using power mean
inequality, we have

v, +qmy, | 1 2
3[ ‘:2:.4 } Uz - m‘Jl Jlmulg(r)m‘71 dqt

<q(y, —mgl)[.[o[z)q [vo nmquS(mnz +m(1-rw)y,)d w

d qm]
<q(y, -my,) [Lm“ mdqm] [J'O[Z}lemnl Dqg(mn2 +m(1-w)y,) I dqm]

1 1 r 1 1 4
[, |=-wl|dw . (——mjm d w
&qu“juaq “ q]

By applying (o, m)-convexity of |,, D,3(x)I', we have
v, +qmy

5| 22 1|
[ 2], }

<q(n, -my, [[ ] J r

1
+[

2],

(m 7%j mnqus(mnz +m(1-)y,)

D S(wy, +m(1-wy,)|

1 ",
— mUl "‘mnlg(t)mnl dqt
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1

x {Lmqm"” |mnl D 3(,)I d o+ J'O[Z]“m (ro—r“) l’"“1 D30I dqm}

e

&,

1 1 ’
+, m=-mw d 1o
'[[z]q [q j ! ]

%{m @, D, +m A, (@), D30, "y
2 r
q

my, Dg(0,)

1
HA@L,, DFO)F MA@, Dqg(nl)l’)r}-
Thus, the proof is accomplished.

Remark 4 In Theorem 5, If we set ¢ =m=1, then we find [14,
Theorem 16].

Theorem 6 Under the assumption of Lemma 2, if r > 1is a real
number, if |, D §(x)I is (c,, m) convex function over [v,,v,], then
1

we have the following midpoint type inequality,

rt+st=1.

3 v, +qmy, _ 1 J'“z %(t)mI1 dqt
02 — mnl my, 1

2],

<q(n, -my,)

| p—— SBID ["+mcC(q)l D |f%

[[ZEI[SHL] (B.@l,,, D,3(0,)F +mC,(@)l,,, D30, )

+(,,(q))§ (Bz(q) by, D80, +mC, (@)1, D F0)I )} (15)
where

B,(q)= J'O[TJ“ wd o=

(2] [a+1],

o] B

B,(q)= J' w'd =

Cl(q):J' q(l m)dm-

U [2]“[ +1],

C,(a)= jl(l w)d =

2, [] [a“] [2]””[ 1],

n(q)= _[ (E—m] d .

https://www.mathematicsgroup.us/journals/annals-of-mathematics-and-physics 8

Proof. Taking absolute value of (6) and using the Holder's
inequality, we have

v, tqmy, | 1 )
3[ ‘:2]‘1 } U;_ - m‘Jl J.mnlg(t)mn1 dqt

1
+ 1

<q(v, —mgl){[omq [ 1o muquS(mnl +m(1-w)y,)ld w
&,

d qm]
<q(y, —-my,) (J.Om" mxdqm] [EZL [

! D, F(roy, + m(1 -y, ) I dqm]
1 1 i : 1
+ |, |=-rm|dw .
[Imq[q ) MIH

1
d qu

By applying (a, m) convexity of I, D,S(x)I', we have

(m —%} mnquE(mnz +m(1-w)y,)

my, D8 (00, +m(1-r)y, )

S[Uz*anl] - J'"z S(t)mn d t

2],

<q(v, -mv,) {j[ W i m}

1

[ o |, Ds(nz)l'dmf "m(l w0 )|, DS(U)I'dm]

x[rl o Imn D&'(nz)l’dm+j

m(1-w )Imn D&(n)l’de
(2]

(g
=q(n, —my,)

1

1 s
x| ———1 (B(@)],, D I'+mcC,(q)l,, D )y
{[z];“[m]q} (B.@1,,, D30,V +mC, (@], D3|

1 1
+0(@)* (B,@,, D3, +mC,@l,, D0, ) (16)
Thus, the proof is accomplished.

Remark 5 In Theorem 6, we have

- If we set a=m=1, then we find [14, Theorem 18].

- If we set «=m=1 and later taking the limit as ¢—>1,
then we find [42, Theorem 2.3].

227
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Trapezoid type inequalities for (a, m)-convex functions

In this section, we prove Trapezoid type inequalities for
differentiable (o, m) -convex functions.

Theorem 7 Under the assumption of Lemma 3, if |, D S| is

(o, m) convex function over [y,,v,], then we have the following
trapezoid type inequality:

~ 3(y,) +q3(my, )

L™ 5(0),, de
B, oy 1

(2], Ty, om

Q(Uz — m‘Jl )
S_Tﬂf{mPﬁ%N&@%&m»

M|, D80, (L,(q) - LZ(Q))}, )

where
Kl (q) = I{E(mﬂ _ |:2:| ma+1 )d o= _ qa+1
4 a [2]q I:a + l}q I:a + 2:|q
[2], -

K,(q)= I%(m” ~[2], W )d =
2l

[a+ 1]4 N [a+ 2]q - [2]:” [a+ 1]q [a+ 2]q

L@=["" - [2], (1w q"

] [2]:” [a+1] [a+2]

L,(q)= j[;](l—[z]q w)(1-10°)d, o
2l

q[a] q

[a+1] [a+2] [ ]

[a+1] 2], [a+2] 2]

Proof. By taking modulus in (11), and using (o, m) -convexity of

mnl

Dqsl , we have

S(nz)+q8(mnl) 1
[2] Uz —my, I'"nlg(t)m"l ar

- Q(Uz - s
[2], T

_ [2:|q m),rlnl D, §(wn, +m(1-ro)y,)d,

<At T a2

)] ,, Dy (o, +m(1-10)y, )

dqm

dqm

40, ~mn,) fi\(l‘[zlq
2L [+ fa-[21, )

w |, DyS(,)

)| d o

_ 4y, —my, )[

2],

Thus, the proof is accomplished.

m, DS (0,)

J

Remark 6 In Theorem 7, we have

- If we set a=m=1, then we find [41, Theorem 4.1].
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- If we set a=m=1 and later taking the limit as q—»1",
then we find [43, Theorem 2.2].

Theorem 8 Under the assumption of Lemma 3, if

|mnl D, F(x)I,r>1 is (o, m) convex function over [v,,9,], then we

have the following trapezoid type inequality:

F(n,)+q3(my ) 0
30, : EON
B g S

(v, —my,)
- e [2]q

X|:
my.

Proof. By taking modulus in (11) and using power mean
inequality, we have

D,3(v,)

(Kl(Q)—Kz(Q))‘*'m

my, Dg(0,)

'@m»g@ﬁ

(18)

5(n,)+ g5 (mn,) Y
30, : 5,4,
(2], I '

_q(y, —my,)

[2

- [qu m)mn1 D, §(ry, +m(1 -y, )d

<[]l

dqmj

By applying (a, m)-convexity of |,, D,§(x)I', we have

x[m(l—[zjq ™

my, Dy (o, +m(1-r0)y, )

| S(UZ)Eztﬁg(mnl 3,

< Q("Z[Z%(J';’(l - [ZL m)‘dqm)k:

J' ‘(1 [2] m)‘
+jo‘(1— 2]qm)‘

_q(, —my,)| 29 5
ERIES

X|:
my.

Thus, the proof is accomplished.

D S(nz

dqm

D 3(v,)

my, DgS(0,)

'(Ll(q)—Lz(q))}

Remark 7 In Theorem 8, we have

- If we set ¢ =m=1, then we find [41, Theorem 4.2].
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- If we set o=m=1 and later taking the limit as q_,1-,
then we find (46, Theorem 6].

Application to special means

For any positive number bu,n,€R | we consider the
following means:

- The Arithmetic mean

v, +y
Ay,yn,)= .
- The Harmonic mean

2
H(y,p,)=—a%

1 2

+ The Geometric mean

G(b,,b,) =0y, -

Proposition 1 Let v,y R,y <n,,a€0,1],me0,1] and

0<q<1.Then we have

G*(n,,qmv,)

H(Uzqunl)— A(l q) 1

4y, —mv,)G*(n,,qmy, )

h A(1,q)
1 1
xm(Al(Q)JrAJQ))erUT (AZ(Q)JrA,,(Q)) (19)

1 v, 1 o qn
where Y, =———|?>= dr=(1-q)) —— L .
! (nz—mn,)j'"m " qz"“’q”nﬁm(l—q”)m

Proof. The inequality (13) for function S(r)=% leads to
q

required result. If we take v, =1,y,=2,4=0.5,m=0.5 and ¢=0.5

in (19), we get

G*(v,,qmvy,)

H my,)— Y,[=0.0
(v,,qmv,) Aag 54
and
qy, ~my,)G>(v,,qmo, ) [ 1 1 ~
A0, [n,(qnz+(1—q)mn,)(A](qHA*(q))**m\,‘z(AI(QHA‘(q))]_O'Oﬂ

Thus, 0.054<0.071.

Proposition 2 Let Y9, €R,n, <v,,¢<0,1],me0,1] and

0<q<1.Then we have

_Al,,qmy,)G’(v,,qmy,) .

G*(v,,qmv,) A(,0) .

< 40, —my, )A(y,,qmy, )G” (v,,qmy, )
B A(1,9)
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1
o, (qv, +(1-qmy,)

1
my?

(A,(@)+A,(9)+——(4,(@)+ A, (@)

(20)

where y =1 (=1 4.-(1- [
1 (szmnl)'lhmnlt my; qr (1 q)anoan2+m(1_qn)nl

Proof. The inequality (13) for function 6(r)=%
q

leads to required result. If we take b, =1,y,=2,4=0.5,m=0.5

and «=0.5 in (20), we get

A(v,,qmy,)G*(y,,qmy,) Y

G” my,)— =0.188
(Uz!q nl) A(l,q) 1
and
q(n, ~my,)A(y,,qmy, )G (v,,qmo, )| 1 1 _
e @, +(l_q)mn‘)’A.(q)+A3(q))+ — (A,(@+A4,(@) =327

Thus, 0.188<3.27.
Conclusion

In the current study, we initially proved two quantum
identities using the integration by parts method. Then, using
these identities, we established some new Midpoint and
Trapezoid type inequalities for differentiable (o, m) -convex
functions, which was the main motivation of this paper. In
upcoming directions, similar inequalities could be found for
co-ordinated convex functions as well.
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