
305

Citation: Shvydkyi OG. Analytical Solution of the Steady Navier-Stokes Equation for an Incompressible Fluid Entrained by a Rotating Disk of Finite Radius in the Area 
of Boundary Layer. Ann Math Phys. 2024;7(3):305-313. Available from: https://dx.doi.org/10.17352/amp.000137

https://dx.doi.org/10.17352/ampDOI: 

M
A

T
H

E
M

A
T

IC
S

 A
N

D 
P

H
Y

S
IC

S
 G

R
O

U
P

2689-7636ISSN: 

Abstract

The fl ow in the neighborhood of a rotating disk is of great practical importance, particularly in connection with rotary machines. It becomes turbulent at larger 

Reynolds numbers, 53 10R   , in the same way as the fl ow about a plate. In this article, we consider a motion of incompressible fl uid that is always turbulent in 

azimuthal direction (Reynolds number based on azimuthal velocity 53 10R   ) and is of both kinds in a radial direction, i.e. laminar (Reynolds number based on radial 

velocity 53 10rR   ) and turbulent ( 53 10rR   ). The equations of analyticity of functions of a spatial complex variable (shortly, the equations of tunnel mathematics) 

afford a possibility to seek the solutions of steady Navier-Stokes equation in view of elementary functions. All vector fi elds, including those obeying the Navier-Stokes 
equation, satisfy the equations of tunnel mathematics. The Navier-Stokes equations themselves are afterward applied for verifi cation of obtained solutions and calculation 
of the pressure. Obtained formulae for pressure allow us to visualize the presence of the boundary layer and estimate its thickness for laminar and turbulent fl ows. We use 
Prandtl`s concept of considering fl uids with small viscosities, i. e. we suppose that the Reynolds number is enough large and the viscosity has an important effect on the 
motion of fl uid only in a very small region near the disk (boundary layer). We also suppose that the fl uid and the disk had at the beginning the same temperatures and the 
energy dissipation occurs only by means of internal friction.
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Introduction

The exact solution of the problem indicated in the title of 
this article for an infi nite disk (the problem was stated by Th. 
von Karman) is given in the handbook on theoretical physics of 
Landau and Lifshitz [1] and in the handbook of Schlichting [2]. 
There this problem was reduced to solving a system of second-
order ordinary differential equations which was obtained by 
numerical methods. The results of this solution are shown in 
Figure 1.

In Figure 1 the function F corresponds to the radial velocity 
vr, the function G to the azimuthal velocity vφ, and the function 
H to the axial projection vz. Figure 1: Solution of the problem for an infi nite disk using numerical methods in the 

handbook of Landau and Lifshitz.
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In this case, the disk is located in the plane 0z  of 
cylindrical coordinates and rotates around the z-axis with a 
constant angular velocity Ω. The liquid is considered from the 
side of the disk where 0z  . The boundary conditions for the 
problem are as follows:

in the plane 0z   we have 0; ; 0   v v r vzr ,                (1)

i. e. the fl uid adheres to the surface of the disk. We assumed in 
our problems that the radius of the disk is arbitrarily equal to 
unity. Although we have imposed no boundary conditions at 

r   , and z H , where H is an immersion depth of the disk, 
the equations of tunnel mathematics allow us to calculate the 
correct solution of the problem at some distance from the edge 
of the disc (for r approximately equal 2).

This article provides a solution to a more realistic physical 
problem when a rotating disk has a fi nite radius (arbitrarily 
equal to unity). The solution applies only to the volume of the 
fl uid enclosed in a cylinder of approximately unit radius of 
height z1 (where z1 is the vicinity of z coordinate on which the 
Navier-Stokes equations work (34) and (34a). In the limits of 
z1 the fl uid moves in the horizontal, mainly radial direction on 
Figure 2).

As is known, if the nonlinear terms in the Navier-Stokes 
equations for a viscous fl uid do not vanish identically then 
the solution of these equations presents great diffi culties, and 
exact solutions can be obtained only in a very small number of 
cases. Concerning the unsteady Navier-Stokes equation, T. Tao 
in his article [3] showed that it can have solutions that become 
infi nite during fi nite time (blowup solutions). And if even 
closed-form solutions exist they are usually presented in the 
form of infi nite power series which is inconvenient for use in 
practice. That`s why it is reasonable to seek solutions of steady 
Navier-Stokes equation in the form of elementary functions. 
An exact solution to the problem under consideration (purely 
mathematical and also in the form of a power series) was given 
by Miss D. M. Hannah [4], and A.N. Tifford [5] for the case of 
laminar fl ow; H. Schlichting and E. Truckenbrodt [6] provided 
an approximate solution with the aid of numerical methods. 
E. Truckenbrodt also investigated the case of turbulent fl ow. 
D. Weyburne [7] applied this to describe the boundary layer 

in the standard probability distribution function methodology. 
Currently used analytical formulae for velocity components in 
the turbulent boundary layer over rotating disk can be found 
in [8].

Theory

Just as for an infi nite disk, the solution of the problem for a 
fl uid entrained by a rotating disk of fi nite radius is symmetric 
with respect to the φ coordinate (i.e. has axial symmetry). 
Figure 2 schematically shows fl uid streamlines in one of the 
planes parallel to the z-axis.

Tunnel mathematics equations applied to the components 
of the vector velocity fi eld in the Cartesian coordinate system 
look like this [9]:

2 2 3/ 2 2 2 3/ 2 2 2

2    .
( ) ( )

u wxy v wxy y u w
x x y y x y z zx y
   

     
     

   (2)

2 2

2 2 3/ 2 2 2 3/ 2 2 2

2  . 
( ) ( )

v wy u wx y v
x x y y x y zx y
  

     
    

           (3)

.w w u vi i
x y z z

   
    

   
              (4)

The components of the velocity fi eld in expressions (2) - 
(4) are set as follows:

; ; ;x y zV u V v V Rew                    (5)

where Re denotes the real part of the function; moreover, the 
functions u, v, w are components of the function of the spatial 
complex variable [9]:

     , , , , ( , , ); P L u x y z iv x y z fw x y z                 (6)

As usual, the fl uid is considered as incompressible:

0.u v wdiv
x y z
  

      
  

V V               (7)

Taking into account (7) we obtain from equations (2) such 
relation:

0.u
z





                (8)

Relation (8) holds provided

0.w
z





                 (9)

We recall that function w is an analytic function of the 
variables x and y and, therefore, a harmonic function on the 
xy plane.

Any vector fi elds including those obeying the Navier-Stokes 
equations satisfy the relations (2) - (4).

Taking into account the symmetry in the φ coordinate the 
Navier-Stokes equations in cylindrical polar coordinates take 
the following form:Figure 2: Fluid streamlines in one of the planes parallel to the z-axis.
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    (12)

where g is the gravitational acceleration;

P – pressure in fl uid;

μ - coeffi cient of dynamic viscosity;

ρ - fl uid density.

Due to the fact that the Laplacian of the analytic function 
w is equal to zero, the equations of tunnel mathematics 
describe a fl uid that moves along the z-axis without internal 
friction, i.e. as an ideal fl uid (this is a feature of this method for 
incompressible fl uid). Taking this into account we can obtain 
the following form of the function w from equations (5), (9), 
and (12):

2 2 1tan .i yw logre logr i log x y i
x

                     (13)

In order to comply with dimension, the expression (13) 
must be written in the following form:

2 2
1

0 0
0 0

log log tan , 
   
            

x yr yw C i C i
r r x

        (14)

Where the constants have follow dimensions: [С0] = m, [r0] 
= m; we can impose r0 = 1 m. Constant r0 allows to adjustment of 
the arbitrary radius of the disk.

We fi nd such relations after differentiating (14):

0
2 2

( ) ;  


 
w C x iy
x x y

                        (15)
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yC f
x y C fw v C y ix C f

y z x y rx y x y

  

       

                 (16)

Expression (16) uses the following relations of tunnel 
mathematics for the operator f and its conjugate operator f* 
[9]:

2 2
sin cos .i y ixf ie i

x y
    

    


            (17)

*

2 2
sin cos .i y ixf ie i

x y
   

   


             (18)

* 1.f f                   (19)

* 2sin .f f                (20)

Special attention should be paid to the operator f in (16) 

since the factor at it will be used to reconstruct the spatial 
coordinate z in the equations on the plane (what corresponds to 
the relation (6)). We can see from equation (16) that this factor 
is 

1
r  (we omit constants and terms depending on φ).

Generally speaking, the complex function w must be 
selected in such a way that its real part corresponds to the 
pattern of occurring physical phenomena (i. e. to the projection 
Vz of the velocity fi eld in Figure 2), and the integrating of 
relations (2) and (3) does not generate integrals that could not 
be solved in quadratures.

The form of the real part of the function w according to 
expression (14) is shown in Figure 3.

It can be seen from the graph shown in Figure 3 that the 
radius of the rotating disk should be equal to unity (arbitrarily). 
For 1r   the fl uid streamlines are already rising.

This form of the real part of the function w is inapplicable in 
the vicinity of the point 0r   since the graph goes to infi nity.

Transforming relations (2) and (3) to cylindrical polar 
coordinates and taking into account expressions (8) and (9) 
we obtain:
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r r
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                (22)

When deriving equations (21) and (22) the well-known 
formulas were used for the transition from Cartesian velocity 
projections to cylindrical polar ones:

cos sin ;ru v v                 (23)

 
 

Figure 3: The graph of the real part of the function w (C0 = 0.05 m).
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sin cos .rv v v               (24)

Since in the region under consideration (Figure 2) the liquid 
moves horizontally (mainly radially), when solving equations 
(21) and (22) we can put 0w  . By integrating these equations 
under such conditions we obtain two solutions for each of the 
projections of the velocity vr и vφ. The solutions that meet the 
physical pattern of the phenomena of this problem (particularly 
the boundary conditions (1)) are as follows:

;v r                   (25)

,rv r


              (26)

where σ is a constant of integration.

Expressions (25) and (26) are the solutions of equations 
(21).

Expression (26) holds since the solution should not have 
a dependence on φ, and we work with the assumption (9). 

Expression (26) is true for 1r  , however, it doesn`t work for 

0r  (it tends to infi nity). That`s why it needs a correction.

Results and discussions

To extend solutions (25) and (26) into space we use the 
factor at the operator f in equation (22):

1 .z
r

               (27)

We consider sinφ at (22) as a constant.

The specifi c form of the velocity projection vr depends on 
the integral relation representing the corresponding mass 
fl uxes of fl uid through the surfaces of the cylinder covering the 
region in question (Figure 2).

Extension of solution on a plane into space for radial ve-
locity

So, for the projection vr the following integral relation is 
used:

,z rv rdr v dz                 (28)

where the integral on the left-hand side represents the mass 
fl ux entering through the upper end of the cylinder and the 
integral on the right-hand side represents the mass fl ux that is 
scattered through the side surface of the cylinder.

Taking into account equalities (5), (14), and (26), we can 
rewrite the integral relation (28) in the following manner:

1 ,rlogrdr dz
r

                 (29)

where constants are omitted.

Accordingly (27), the presence of the factor 
1
r

 in the right-

hand side of (29) is suffi cient for building of spatial formula. 
In order for the integral in the right-hand side of (29) to not 
depend on changing the variable of integration z by r, both 
variables r and z should enter in the expression for radial 
velocity vr symmetrically. Then formula (26) can be extended 
into space as follows:

0 0 0

;r
r r

rz rzv log
z r z

                 (30)

where the range of r is about (0; 2); z varies in the limits of z1.

In (30) 0rz  is a normalization factor, and its dimension is a 

meter. The value of 0rz  depends on the value of the z coordinate 

at which the Navier-Stokes equation works. Particularly, for 
the z coordinate corresponding to the boundary layer the value 

of 0rz  is of the order of the thickness of boundary layer δ, i. e. 

0rz  .

Approximate spatial and plane graphs for the functions vr in 
(30) and corrected (26) are shown in Figures 4,5 respectively. 
These graphs correspond to the pattern of physical phenomena 
arising during the rotation of a disk in a liquid for the following 

Figure 4: Spatial graph for formula (30).

Figure 5: Plane graph for corrected formula (26).
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reasons. Let us consider from above the motion of a liquid 
over a disk at rest in a non-inertial frame of reference for a 
small value of z coordinate, when the cohesion forces of liquid 
particles with the disk surface still have an appreciable value 
(Figure 6).

Coriolis forces kF 



 caused by the azimuthal velocity 'v


 (the 

prime means movement in a non-inertial frame of reference) 
will be directed to the origin and thus will prevent the increase 

in radial velocity '
rv


 under the action of centrifugal forces cfF



. At the same time the Coriolis forces 
krF


 caused by the radial 

velocity '
rv


 will contribute to an increase in the magnitude 

of the azimuthal velocity 'v
 . As a result of such a dynamic 

pattern the radial velocity '
rv


 having reached its maximum will 

gradually decrease to zero which corresponds to the graphs 
shown in Figures 4,5.

A similar picture for the same reasons will be observed 
as the z coordinate increases while the r coordinate remains 
constant. In this case the radial velocity '

rv


 begins to increase 
due to the weakening of the cohesion forces between the liquid 
particles and the disk surface.

This dependence of the radial velocity component vr 
on the coordinates r and z can also be explained by energy 
considerations. If we return to the inertial reference system, 
then the appearance of a new component of velocity (radial) 
in it requires certain energy expenditures. Since the energy 
supplied to the disk for its rotation remains unchanged, an 
increase in the radial component of the velocity vr is possible 
only due to a decrease in the azimuthal component vφ which 
in the inertial frame of reference will tend to retain its value. 
Therefore, the process of extinguishing the radial component 
vr in both directions, r, and z, will inevitably occur in the liquid.

In this regard, a natural question arises as to why in the 
handbook of Landau and Lifshitz [1] and in the handbook of 
Schlichting [2] the radial velocity depends on the coordinate r 
according to linear law:

 .rv r F z                  (31)

The point is that formula (31) really takes place for small 
values of the coordinate r. And since for an infi nite disk 
(namely such a model is considered in the handbook of Landau 
and Lifshitz and in the handbook of Schlichting) any value of r 
in principle can be considered as small, then formula (31) has a 
full right to live. It is of course inapplicable for a disk of fi nite 
radius.

Since in the region under consideration in Figure 2 the liquid 
moves horizontally (mainly radially), then the projection of the 
particle velocity on the z-axis is zero (vz = 0), and therefore 
Liouville's theorem on the invariability of the phase volume of 
a system of particles is satisfi ed automatically [10]. The fi vefold 

integral r zdrdzdv dv dv  is identically equal to zero.

It should also be noted that in accordance with the graphs 
in Figures 4,5 for 1r   the fl uid streamlines must abruptly 
change the direction of motion so that the vector of the total 
velocity makes an obtuse angle with the r axis as actually 
shown in Figure 2.

Extension of solution on a plane into space for azimuthal 
velocity

By means (27) the extension of (25) into space is fulfi lled 
very simple.

0

;
1

rv z
z









                (32)

where 0z   is a normalization factor, and its dimension is a 

meter. We added unity in the denominator in order to satisfy 
the boundary conditions (1).

Finding the auxiliary relations

We can at once verify the solutions (30) and (32) that 
have been expanded into space by means apparatus of tunnel 
mathematics with the aid of true Navier-Stokes equations. The 
simplest way to do this is to use equation (11) since it doesn’t 
contain the pressure P. Substituting solutions (30) and (32), 
and the real part of relation (14), and their corresponding 
derivative into equation (11) we conclude following important 
auxiliary relation:

2
0 0

2 2 .
( )

r zv v
r z z z z 


 

     
              (33)

In the area of laminar boundary layer 0z z  , so we 

have such a quadratic equation for determining of 0z  :

 2
0 0

2 2 0r
z

vz z v
r 
        

 
.            (34)

In the area of turbulent boundary layer 0z z  , so we 
have a similar quadratic equation for determining of δ:

Figure 6: Motion of liquid over a disk at rest in a non-inertial frame of reference for 
a small value of z coordinate.
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 2 2 2 0r
z

v v
r
         

 
.             (34a)

Formula (11) where the pressure is absent due to axial 
symmetry can be used to calculate the friction force acting in 
a fl uid including that acting per unit disk surface in a direction 
perpendicular to its radius. Having performed the appropriate 
calculations with (32), we obtain the following formula for the 
friction force:

2

0
0

.

1
fr

v rF
z zz

z







 

  
  

  
 

              (35)

Directing z coordinate to zero in expression (35) we obtain 
the relation for the friction force acting on a unit surface of the 
disk in the direction perpendicular to its radius:

0

.fr
rF

z 


                  (36)

Thus we conclude from (36) that constant 0z   for 
laminar and turbulent motion of fl uid must be determined 
experimentally.

Calculation of pressure and parameters of the boundary 
layer using the Navier-Stokes equations

Using this method, it is still quite diffi cult to obtain an exact 
analytical expression for pressure since, for example, equation 
(12) for projections of velocity on the z-axis works only for an 
ideal fl uid (i. e. this equation doesn`t work fully in the region of 
the boundary layer).

The approximate formula for the boundary layer in the area 
under consideration in Figure 2 looks like this:
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                  
      
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  

 

  

                   (37)

Formula (37) is obtained by integrating equation (10). Since 
(37) referred to the region of the boundary layer we replaced 
the constant 0rz  by the thickness of the boundary layer .

In this case, the corresponding derivatives were calculated 
using formulae (14), (30) and (32). Generally speaking, we must 

yet add to the right-hand side of (37) the hydrostatic pressure 

 g H z  , where H is the immersion depth of the disk.

In Figures 7,8 graphs corresponding to formula (37) in the 

region of the laminar boundary layer (Reynolds number based 

on radial velocity 53 10r
r
v r zrR
 


    , where  is a kinematic 

viscosity of fl uid) are presented at values of angular velocity Ω 

equal to 70 rad/s and 100 rad/s respectively using the following 
values of the constants:

0 0.001 ;z m   

0 0.00025 ;rz m                  (38)

0 0.001 ;C m  

0 1 .r m  

In all fi gures shown below the pressure is measured in 
Pascals, and r and z coordinates are measured in meters.

We recall that the radius of the disc is equal to 1 meter.

The graphs are calculated for water with a density  = 1000 
kg/m3 and a dynamic viscosity coeffi cient μ = 0.001 Pa×s. We can 
see from these graphs that the pressure profi le in the boundary 
layer of incompressible fl uid for our problem is convex. In the 
thin boundary layer (very small z) the pressure signifi cantly 
arises which corresponds to the presence of a large tangential-
velocity gradient, resulting in a large viscous dissipation of 
energy [1].

Figure 7: Graph corresponding to formula (37) at Ω = 70 rad/s (laminar motion in 
the radial direction).

Figure 8: Graph corresponding to formula (37) at Ω = 100 rad/s (laminar motion in 
the radial direction).
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We conclude from (38) that the thickness of the laminar 
boundary layer is of the order 

4~ 2.5 10  m  , what fully corresponds to the theory of 

incompressible fl uid [1,2]:

6 2
410  /~ 10  

1001 /
m s m
s




 


               (39)

In Figure 9 graph corresponding to formula (37) in the 
region of the turbulent boundary layer (Reynolds number 

based on radial velocity 
8~ 10r

r
v r zrR
 


  ) are presented at 

the value of angular velocity Ω equal to 10000 rad/s using the 
following values of the constants:

0 0.0001 ;z m   

0 0.025 ;rz m                 (40)

0 0.001 ;C m  

0 1 .r m  

We conclude from (40) that the thickness of the turbulent 
boundary layer is of the order 

2~ 2.5 10  m  , what fully corresponds to the theory of 

incompressible fl uid [2]:

1/51/5 6 2
3/5 3/5 3/5 210  /~ 10  

100001 /
m sr r r m

s



          

.          (41)

Now we verify either one can fi nd the relations corresponding 
to (39) and (41) of the theory of boundary layer from obtained 
formulae for pressure.

Integrating (12) we obtain the following expression for 
pressure in the region of the boundary layer:

2 2
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                 (42)

Corresponding derivatives were calculated using formulae 
(14) and (30). We omit the constants of integration. In (42) the 
term with μ is absent.

Comparing (37) and (42) we fi nd:
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                (43)

where H is the immersion depth of the disk.

We can neglect in (43) the terms with C0 as we can arbitrarily 
take its value very small. Besides, we consider polar coordinate 
r as a constant.

Such ratios in the region of the boundary layer follow from 
values of constants in (38) and (40):

~ 1;z


                (44)

for laminar layer: 
0

~ 0z
z 

;                (45)

for turbulent layer: 
0

1z
z 

 .                           (46)

Expanding the logarithms in (43) in Taylor’s series near 1 
as far as linear terms and neglecting infi nitesimal terms we 
obtain the following approximate equalities.

For laminar layer:

2
2

2

21 1 .z z gHr
 

              
               (47)

It`s easy to see from (47) that the maximum power of the z 
coordinate is 4; therefore, the following relation at the same r 
coordinate holds:

~ .constz


                (48)

It follows from (48) that the thickness of the laminar 
boundary layer decreases inversely proportionally to the 
square root of Ω. This fully corresponds to (39) and the theory 
of laminar boundary layer in incompressible fl uid [1,2].

For turbulent layer:

22
02

2

21 .
zz z gHr
z


 

                  
              (49)

We can rewrite (49) in such matter:Figure 9: Graph corresponding to formula (37) at Ω = 10000 rad/s (turbulent motion 
in the radial direction).
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.             (50)

To fi nd exact solutions of (50) is diffi cult enough. But we 
know accordingly (41) that the z coordinate in the region of the 
turbulent boundary layer must be of the order of 0.01 m. So, we 
must determine whether either roots of such order exist for 
equation (50).

In (50) we have:

10000 / ;rad s 

0 ~ 0.0001 ; ~ 0.025 z m m  (accordingly with (40));

210 / ;g m s  

besides, we put ~ 0.5 .r m

In Figures 10-12 the roots of (50) are shown versus an 
immersion depth of the disk H.

So, we see that at H = 1 m, there are two appropriate roots 
near z = 0.025 m; at H = 20 m there is one appropriate root 
equal to exactly 0.025 m; and at H = 50 m, there are already no 

appropriate roots. Therefore, adjusting the magnitude of H we 
can always fi nd solutions of (50) in the region of the turbulent 
layer.

Discussion

Implications of the fi ndings

In this article, the solution implies obtaining the analytical 
expressions (closed-form formulae, not power series) for 
three components of velocity and pressure in cylindrical 
polar coordinates. Numerical methods are not applicable. The 
formulae for the velocity components are derived from the 
relations of tunnel mathematics since the latter is satisfi ed 
by all vector fi elds (including those obeying the Navier-
Stokes equations). In this case, unnecessary solutions are 
inevitably obtained and must be cut off by means of a physical 
analysis of the task. The Navier-Stokes equation is then used 
for verifi cation of obtained solutions and calculation of the 
pressure. Obtained formulae for pressure allow us to visualize 
the presence of the boundary layer and estimate its thickness 
for laminar and turbulent fl ows.

Limitations of the results

This method is based on algebraic tunnel mathematics [9] 
and has its limitations. For example, the proposed form of the 
real part of the function w is inapplicable in the vicinity of the 
point 0r   since its graph goes to infi nity (Figure 3). Besides, 
although the graph for the azimuthal velocity v  in (32) is 
similar to the graph of function G in Figure 1 and can be used to 
model a laminar boundary layer, for a turbulent boundary layer 
the graph of azimuthal velocity has a much more complicated 
form [11,12].

Validity of the proposed solution and its applications

Since this method allows us to fairly accurately estimate 
the order of thickness of the laminar and turbulent boundary 
layers, we can talk about its certain applicability for engineering 
applications. Of course, tensor tunnel mathematics, unlike 
algebraic one, has a wider application and allows us to more 
accurately model Karman`s solution for a laminar boundary 

Figure 10: Roots of equation (50) at H = 1 m.

Figure 11: Roots of equation (50) at H = 20 m.

Figure 12: Roots of equation (50) at H = 50 m.
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layer over a rotating disk [13]. Also currently used is the 
modeling of laminar fl ows over a rotating disk using the power 
series [14].

Conclusion

The solution of the Navier-Stokes equations using the tunnel 
mathematics apparatus is simple and elegant and also requires 
good mathematical training and a deep physical analysis of 
the problem. This method does not require specifi c software 
and can be used for the primary analysis of hydrodynamic 
problems. Obtained formulae for pressure allow us to visualize 
the presence of the boundary layer and estimate the order of its 
thickness for laminar and turbulent fl ows. The results obtained 
using this method for a fl uid entrained by a disk of fi nite 
radius correspond to the results of a similar problem in classic 
handbooks on hydrodynamics where numerical methods were 
used.

Data availability

The data that supports the fi ndings of this study are 
available within the article.
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