Esophageal temperature evolution during high power short duration ablation: Numerical simulations and clinical suggestions

Main Article Content

Antonio Fasano*
Luca Anfuso

Downloads

Download data is not yet available.

Article Details

Fasano, A., & Anfuso, L. (2020). Esophageal temperature evolution during high power short duration ablation: Numerical simulations and clinical suggestions. Journal of Cardiovascular Medicine and Cardiology, 7(2), 125–128. https://doi.org/10.17352/2455-2976.000126
Research Article(s)

Copyright (c) 2020 Fasano A, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Licensing and protecting the author rights is the central aim and core of the publishing business. Peertechz dedicates itself in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. Peertechz licensing terms are formulated to facilitate reuse of the manuscripts published in journals to take maximum advantage of Open Access publication and for the purpose of disseminating knowledge.

We support 'libre' open access, which defines Open Access in true terms as free of charge online access along with usage rights. The usage rights are granted through the use of specific Creative Commons license.

Peertechz accomplice with- [CC BY 4.0]

Explanation

'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.

Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license.

With this license, the authors are allowed that after publishing with Peertechz, they can share their research by posting a free draft copy of their article to any repository or website.
'CC BY' license observance:

License Name

Permission to read and download

Permission to display in a repository

Permission to translate

Commercial uses of manuscript

CC BY 4.0

Yes

Yes

Yes

Yes

The authors please note that Creative Commons license is focused on making creative works available for discovery and reuse. Creative Commons licenses provide an alternative to standard copyrights, allowing authors to specify ways that their works can be used without having to grant permission for each individual request. Others who want to reserve all of their rights under copyright law should not use CC licenses.

Baher A, Kheirkhahan M, Rechenmacher SJ, Marashly Q, Kholmovski EG, et al. (2018) High-Power Radiofrequency Catheter Ablation of Atrial Fibrillation Using Late Gadolinium Enhancement MRI as a Novel Index of Esophageal Injury. JACC Clin Electrophysiol 4: 1583-1594. Link: https://bit.ly/2zy2u4g

Vassallo F, Cunha , Serpa E, Meigre LL, Carloni H, et al. (2019) Comparison of high power short duration (HPSD) ablation of atrial fibrillation using a contact force sensing catheter and conventional technique: Initial results. J Cardiovasc Electrophysiol 30: 1877-1883. Link: https://bit.ly/35XHrE5

Okamatsu H, Koyama J, Sakai Y, Negishi K, Hayashi K, et al. (2019) High-power application is associated with shorter procedure time and higher rate of first-pass pulmonary vein isolation in ablation index-guided atrial fibrillation ablation. J Cardiovasc Electrophysiol 30: 2751-2758. Link: https://bit.ly/2T4BbWa

Berte B, Hilfiker G, Moccetti F, Schefer T, Weberndörfer V, et al. (2019) Pulmonary vein isolation using ablation index vs. CLOSE protocol with a surround flow ablation catheter. J Cardiovasc Electrophysiol 30: 2199-2204. Link: https://bit.ly/2T18jOB

Bunch TJ, May HT, Bair TL, Crandall BG, Cutler MJ, et al. (2020) Long-term outcomes after low power, slower movement versus high power, faster movement irrigated-tip catheter ablation for atrial fibrillation. Heart Rhythm 17: 184-189. Link: https://bit.ly/2WtdrwN

Reddy VY, Grimaldi M, De Potter T, Vijgen JM, Bulava A, et al. (2019) Pulmonary Vein Isolation with Very High Power, Short Duration, Temperature-Controlled Lesions. The QDOT-FAST Trial. JACC: Clinical Electrophysiology 5: 778-786. Link: https://bit.ly/3cFsdWQ

Barbhaiya C R, Kogan EV, Jankelson L, Knottset RJ, et al. (2020) Esophageal Temperature Dynamics During High Power Short Duration Posterior Wall Ablation. Heart Rhythm 17: 721-727. Link: https://bit.ly/3bv9r3f

Berjano EJ, Hornero F (2004) Thermal-electrical modeling for epicardial atrial radiofrequency ablation. IEEE Trans Biomed Engineering 51: 1348-1357. Link: https://bit.ly/2xYqxJb

Berjano EJ (2006) Theoretical modeling for radiofrequency ablation: state of the art and challenges for the future. Biomed Eng Online 5: 24. Link: https://bit.ly/2T3Qz57

Pérez JJ, D'Avila A, Aryana A, Berjano E (2015) Electrical and Thermal Effects of Esophageal Temperature Probes on Radiofrequency Catheter Ablation of Atrial Fibrillation: Results from a Computational Modeling Study. J Cardiovasc Electrophysiol 26: 556-564. Link: https://bit.ly/2WtH4Os

Fasano A, Anfuso L, Bozzi S, Pandozi C (2016) Safety and necessity of thermal esophageal probes during radiofrequency ablation for the treatment of atrial fibrillation. J Atrial Fibrillation 9: 1434. Link: https://bit.ly/3bv9QTj

Fasano A, Anfuso L, Arena G, Pandozi C (2017) Cryo-ablation for pulmonary veins isolation: importance of ETM. J Atrial Fibrillation 9: 1-7.

Dhillon G, Ahsan S, Honarbakhsh S, Lim W, Baca M, et al. (2019) A multicentered evaluation of ablation at higher power guided by ablation index: Establishing ablation targets for pulmonary vein isolation. J Cardiovasc Electrophysiol 30: 357-365. Link: https://bit.ly/3dDHK9Z

Lemola K, Sneider M, Desjardins B, Case I, Han J, et al. (2004) Computed Tomographic Analysis of the Anatomy of the Left Atrium and the Esophagus Implications for Left Atrial Catheter Ablation. Circulation 110: 3655-3660. Link: https://bit.ly/3czLY2o

Tsao HM, Wu MH, Higa S, Lee KT, Tai CT, et al. (2005) Anatomic Relationship of the Esophagus and Left Atrium. Chest 28: 2581-2587. Link: https://bit.ly/3fNb7IA

Anfuso L, Corsi M, Fasano A (2018) Esophageal thermal probes: how fast should they be? M J Cardiol 3: 018. Link: https://bit.ly/2T1Qq1S

Black-Maier E, Pokorney SD, Barnett AS, Zeitler EP1, Sun AY, et al. (2017) Risk of atrioesophageal fistula formation with contact force–sensing catheters. Heart Rhythm 14: 1328-1333. Link: https://bit.ly/3buNhxU