The Journey of TAVR
Main Article Content
Downloads
Article Details
Copyright (c) 2020 De la Fuente LM, et al.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing and protecting the author rights is the central aim and core of the publishing business. Peertechz dedicates itself in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. Peertechz licensing terms are formulated to facilitate reuse of the manuscripts published in journals to take maximum advantage of Open Access publication and for the purpose of disseminating knowledge.
We support 'libre' open access, which defines Open Access in true terms as free of charge online access along with usage rights. The usage rights are granted through the use of specific Creative Commons license.
Peertechz accomplice with- [CC BY 4.0]
Explanation
'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.
Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license.
With this license, the authors are allowed that after publishing with Peertechz, they can share their research by posting a free draft copy of their article to any repository or website.
'CC BY' license observance:
License Name |
Permission to read and download |
Permission to display in a repository |
Permission to translate |
Commercial uses of manuscript |
CC BY 4.0 |
Yes |
Yes |
Yes |
Yes |
The authors please note that Creative Commons license is focused on making creative works available for discovery and reuse. Creative Commons licenses provide an alternative to standard copyrights, allowing authors to specify ways that their works can be used without having to grant permission for each individual request. Others who want to reserve all of their rights under copyright law should not use CC licenses.
Cribier A, Eltchaninoff H, Bash A, Borenstein N, Tron C, et al. (2002) Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation. 106: 3006-3008. Link: https://bit.ly/2Y7BpyV
Mack MJ, Leon MB, Thourani VH, Makkar R, Kodali SK, et al. (2019) Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med 380: 1695-1705. Link: https://bit.ly/2VDuxHX
Popma JJ, Deeb GM, Yakubov SJ, Mumtaz M, Gada H,et al. (2019) Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N Engl J Med 380: 1706-1715. Link: https://bit.ly/3aGeMUT
Jonas M, Rozenman Y, Moshkovitz Y, Hamdan A, Kislev Y, et al. (2015) The LeaflexTM Catheter Systema viable treatment option alongside valve replacement? Preclinical feasibility of a novel device designed for fracturing aortic valve calcification. EuroIntervention 11: 582-590. Link: https://bit.ly/2YfuGDn
Vandvik PO, Otto CM, Siemieniuk RA (2016) Transcatheter or surgical aortic valve replacement for patients with severe, symptomatic, aortic stenosis at low to intermediate surgical risk: a clinical practice guideline. BMJ 354: i5085-i5085. Link: https://bit.ly/2yKJajJ
Foroutan F, Guyatt GH, Otto CM, Siemieniuk RA, Schandelmaier S, et al. (2017) Structural valve deterioration after transcatheter aortic valve implantation. Heart 103: 1899-1905. Link: https://bit.ly/2xSIgSn
Saleem S, Younas S, Syed MA (2019) Meta-Analysis Comparing Transcatheter Aortic Valve Implantation to Surgical Aortic Valve Replacement in Low Surgical Risk Patients. Am J Cardiol 124: 1257-1264. Link: https://bit.ly/3cRHpAc